Entries by Michelle Smith

, ,

The Polypharmacological Effects of Cannabidiol

Cannabidiol (CBD) is a major phytocannabinoid present in Cannabis sativa (Linneo, 1753). This naturally occurring secondary metabolite does not induce intoxication or exhibit the characteristic profile of drugs of abuse from cannabis like Δ9-tetrahydrocannabinol (∆9-THC) does. In contrast to ∆9-THC, our knowledge of the neuro-molecular mechanisms of CBD is limited, and its pharmacology, which appears to be complex, has not yet been fully elucidated. The study of the pharmacological effects of CBD has grown exponentially in recent years, making it necessary to generate frequently updated reports on this important metabolite. In this article, a rationalized integration of the mechanisms of action of CBD on molecular targets and pharmacological implications in animal models and human diseases, such as epilepsy, pain, neuropsychiatric disorders, Alzheimer’s disease, and inflammatory diseases, are presented. We identify around 56 different molecular targets for CBD, including enzymes and ion channels/metabotropic receptors involved in neurologic conditions. Herein, we compiled the knowledge found in the scientific literature on the multiple mechanisms of actions of CBD. The in vitro and in vivo findings are essential for fully understanding the polypharmacological nature of this natural product.

,

Tetrahydrocannabivarin (THCV) Protects Adipose-Derived Mesenchymal Stem Cells (ASC) against Endoplasmic Reticulum Stress Development and Reduces Inflammation during Adipogenesis

The endoplasmic reticulum (ER) fulfills essential duties in cell physiology, and impairment of this organelle’s functions is associated with a wide number of metabolic diseases. When ER stress is generated in the adipose tissue, it is observed that the metabolism and energy homeostasis of the adipocytes are altered, leading to obesity-associated metabolic disorders such as type 2 diabetes (T2D). In the present work, we aimed to evaluate the protective effects of ∆9-tetrahydrocannabivarin (THCV, a cannabinoid compound isolated from Cannabis sativa L.) against ER stress in adipose-derived mesenchymal stem cells. Our results show that pre-treatment with THCV prevents the subcellular alteration of cell components such as nuclei, F-actin, or mitochondria distribution, and restores cell migration, cell proliferation and colony-forming capacity upon ER stress. In addition, THCV partially reverts the effects that ER stress induces regarding the activation of apoptosis and the altered anti- and pro-inflammatory cytokine profile. This indicates the protective characteristics of this cannabinoid compound in the adipose tissue. Most importantly, our data demonstrate that THCV decreases the expression of genes involved in the unfolded protein response (UPR) pathway, which were upregulated upon induction of ER stress. Altogether, our study shows that the cannabinoid THCV is a promising compound that counters the harmful effects triggered by ER stress in the adipose tissue. This work paves the way for the development of new therapeutic means based on THCV and its regenerative properties to create a favorable environment for the development of healthy mature adipocyte tissue and to reduce the incidence and clinical outcome of metabolic diseases such as diabetes.

,

The Effects of Long-Term Self-Dosing of Cannabidiol on Drowsiness, Testosterone Levels, and Liver Function

Previous research indicated that cannabidiol (CBD) may result in low levels of male total testosterone (TT), elevations in liver tests (LTs), and daytime drowsiness (DD). We investigated the prevalences of TT and LT in a large adult sample self-administering CBD and determined the effect self- dosing of CBD has on the severity of DD. Methods: Adult participants (18–75 years of age) who self-dose CBD orally for a minimum of 30 days were recruited for this decentralized observational study from companies that offer CBD products. Participants were sent their usual CBD regimen. A clinical study platform was used on a phone app to obtain consent and collect study data.

,

Cannabidiol-associated hepatotoxicity: A systematic review and meta-analysis

Inflammatory bowel diseases (IBDs) are chronic conditions of unknown cause or cure. Treatment seeks to reduce symptoms and induce and maintain remission. Many patients have turned to alternatives, such as cannabis, to alleviate living with IBD. This study reports the demographics, prevalence, and perception on cannabis use of patients attending an IBD clinic. Patients agreed to participate and completed an anonymous survey during their visit or online. Descriptive analysis, Fisher’s exact test, and Wilcoxon-Mann-Whitney rank-sum test were used. One hundred and sixty- two adults (85 males, 77 with CD) completed the survey. Sixty (37%) reported use of cannabis, of which 38 (63%) used it to relieve their IBD. A value of 77% reported low to moderate knowledge about cannabis, and 15% reported little to no knowledge. Among cannabis users, 48% had discussed use with their physician, but 88% said they would feel comfortable discussing medical cannabis for IBD. Most saw improvement of their symptoms (85.7%). A considerable number of patients with IBD use medical cannabis for their disease, unknown to their physician. The study reinforces the importance that physicians understand the role of cannabis in the treatment of IBD in order to appropriately counsel patients.

,

A Survey of Cannabis Use among Patients with Inflammatory Bowel Disease (IBD)

Inflammatory bowel diseases (IBDs) are chronic conditions of unknown cause or cure. Treatment seeks to reduce symptoms and induce and maintain remission. Many patients have turned to alternatives, such as cannabis, to alleviate living with IBD. This study reports the demographics, prevalence, and perception on cannabis use of patients attending an IBD clinic. Patients agreed to participate and completed an anonymous survey during their visit or online. Descriptive analysis, Fisher’s exact test, and Wilcoxon-Mann-Whitney rank-sum test were used. One hundred and sixty- two adults (85 males, 77 with CD) completed the survey. Sixty (37%) reported use of cannabis, of which 38 (63%) used it to relieve their IBD. A value of 77% reported low to moderate knowledge about cannabis, and 15% reported little to no knowledge. Among cannabis users, 48% had discussed use with their physician, but 88% said they would feel comfortable discussing medical cannabis for IBD. Most saw improvement of their symptoms (85.7%). A considerable number of patients with IBD use medical cannabis for their disease, unknown to their physician. The study reinforces the importance that physicians understand the role of cannabis in the treatment of IBD in order to appropriately counsel patients.

, ,

Modulation of pulmonary immune function by inhaled cannabis products and consequences for lung disease

The lungs, in addition to participating in gas exchange, represent the first line of defense against inhaled pathogens and respiratory toxicants. Cells lining the airways and alveoli include epithelial cells and alveolar macrophages, the latter being resident innate immune cells important in surfactant recycling, protection against bacterial invasion and modulation of lung immune homeostasis. Environmental exposure to toxicants found in cigarette smoke, air pollution and cannabis can alter the number and function of immune cells in the lungs. Cannabis (marijuana) is a plant-derived product that is typically inhaled in the form of smoke from a joint. However, alternative delivery methods such as vaping, which heats the plant without combustion, are becoming more common. Cannabis use has increased in recent years, coinciding with more countries legalizing cannabis for both recreational and medicinal purposes. Cannabis may have numerous health benefits owing to the presence of cannabinoids that dampen immune function and therefore tame inflammation that is associated with chronic diseases such as arthritis.

,

Cannabidiol’s neuroprotective properties and potential treatment of traumatic brain injuries

Cannabidiol (CBD) has numerous pharmacological targets that initiate anti-inflammatory, antioxidative, and antiepileptic properties. These neuroprotective benefits have generated interest in CBD’s therapeutic potential against the secondary injury cascade from traumatic brain injury (TBI). There are currently no effective broad treatment strategies for combating the damaging mechanisms that follow the primary injury and lead to lasting neurological consequences or death. However, CBD’s effects on different neurotransmitter systems, the blood brain barrier, oxidative stress mechanisms, and the inflammatory response provides mechanistic support for CBD’s clinical utility in TBI. This review describes the cascades of damage caused by TBI and CBD’s neuroprotective mechanisms to counter them. We also present challenges in the clinical treatment of TBI and discuss important future clinical research directions for integrating CBD in treatment protocols. The mechanistic evidence provided by pre-clinical research shows great potential for CBD as a much-needed improvement in the clinical treatment of TBI. Upcoming clinical trials sponsored by major professional sport leagues are the first attempts to test the efficacy of CBD in head injury treatment protocols and highlight the need for further clinical research.

Efficacy and safety of topical 0.1% cannabidiol for managing recurrent aphthous ulcers: a randomized controlled trial

Although topical steroids constitute the first-line therapy for recurrent aphthous ulcers (RAUs), their long-term use often leads to candidiasis. Although cannabidiol (CBD) can be an alternative for pharmacologically managing RAUs due to its analgesic and anti-inflammatory in vivo effects, there is a lack of clinical and safety trials concerning its use. The aim of this study was to evaluate the clinical safety and efficacy of topical 0.1% CBD for managing RAU. A CBD patch test was performed on 100 healthy subjects. CBD was applied on the normal oral mucosa of 50 healthy subjects 3 times/day for 7 days. Oral examination, vital signs, and blood tests were performed pre- and post-CBD use. Another 69 RAU subjects randomly received one of three topical interventions: 0.1% CBD, 0.1% triamcinolone acetonide (TA), or placebo. These were applied on the ulcers 3 times/day for 7 days. The ulcer and erythematous size were measured on day 0, 2, 5, and 7. Pain ratings were recorded daily. The subjects rated their satisfaction with the intervention and completed a quality-of-life questionnaire (OHIP-14).

Cannabis-Assisted Psychotherapy for Complex Dissociative Posttraumatic Stress Disorder: A Case Report

A dissociative subtype of posttraumatic stress disorder, known as “D-PTSD”, has been included in the Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition. In addition to meeting criteria for PTSD, patients endorse prominent dissociative symptoms, namely depersonalization and derealization, or detachment from one’s self and surroundings. At present, this population is supported by a highly heterogeneous and undeveloped literature. Targeted interventions are therefore lacking, and those indicated for PTSD are limited by poor efficacy, delayed onset of action, and low patient engagement. Here, we introduce cannabis-assisted psychotherapy (CAP) as a novel treatment for D-PTSD, drawing parallels to psychedelic therapy. Case presentation: A 28-year-old female presented with complex D-PTSD. In a naturalistic setting, she underwent 10 sessions of CAP, scheduled twice monthly over 5 months, coupled with integrative cognitive behavioral therapy. An autonomic and relational approach to CAP was leveraged, specifically psychedelic somatic interactional psychotherapy. Acute effects included oceanic boundlessness, ego dissolution, and emotional breakthrough.

,

Cannabis for Anxiety and PTSD

Anxiety disorders are the most common type of psychiatric disorders, and they’re one of the most common conditions for which people use cannabis. One review found that among 6665 cannabis users with data collected from 13 different studies, 52% of the subjects reported using cannabis for anxiety, making it the second most commonly treated symptom, following pain (1). Anxiety disorders come in many forms, including generalized anxiety, social anxiety, and panic disorders.

Table 2 Descriptions of frequently consumed Cannabis flower chemovar index codes

Little is known about the frequency with which different combinations of phytochemicals (chemovars) arise in Cannabis flower or whether common chemovars are associated with distinct pharmacodynamics and patient health outcomes. This study created a clinically relevant, user-friendly, scalable chemovar indexing system summarizing primary cannabinoid and terpene contents and tested whether the most frequently consumed chemovars differ in their treatment effectiveness and experienced side effects.

,

Cannabidiol Negatively Regulates Androgenic Signal in Prostate Cancer Cells and Fine-Tunes the Tumorigenesis by Modulating Endoplasmic Reticulum-Associated Degradation, Unfolded Protein Response, and Autophagy

Cannabis sativa L., Cannabaceae, has been used as a herbal medicine for several thousand years in many cultures and it has more than 540 metabolites that provide therapeutic effects. Cannabinoids are the major compounds derived from the Cannabis species. There are over 120 isolated and identified cannabinoids from C. sativa and (−)-cannabidiol is one of the most well-researched among them. Recent studies have focused on the expanding usage of cannabidiol in many therapeutic areas as well as cancer. Studies demonstrated a negative correlation between cannabidiol administration and the growth of various cancer types, including prostate cancer. However, the detailed mode of action of cannabidiol on prostate cancer remains unclear. In the present study, we investigated the molecular mechanism of cannabidiol prostate cancer cells. For this aim, we examined the effect of cannabidiol on autophagy, endoplasmic reticulum-associated degradation, endoplasmic reticulum stress, unfolded protein response, epithelial-mesenchymal transition, angiogenesis, and androgenic signaling in vitro. We found that cannabidiol remarkably inhibited autophagy. Also, it strongly induced unfolded protein response and endoplasmic reticulum-associated degradation mechanisms. Moreover, it exerted anti-cancer activity by reducing epithelial-mesenchymal transition and causing cell cycle arrest. Additionally, cannabidiol importantly disrupted androgenic signaling by affecting basal androgen receptor levels and inhibiting nuclear translocation of this receptor.