Cannabinoids Reduce Extracellular Vesicle Release from HIV-1 Infected Myeloid Cells and Inhibit Viral Transcription

Cannabidiol (CBD) and Δ9-tetrahydrocannabinol (THC), the primary cannabinoids present in cannabis, are effective in reducing inflammation. Studies show that cannabis use in people living with HIV-1 is associated with lower viral load, lower circulating CD16+ monocytes and high CD4+ T-cell counts, suggesting a potentially therapeutic application. Here, HIV-1 infected U1 monocytes and primary macrophages were used to assess the effects of CBD. Post-CBD treatment, EV concentrations were analyzed using nanoparticle tracking analysis.

Anti-Inflammatory and Antiviral Effects of Cannabinoids in Inhibiting and Preventing SARS-CoV-2 Infection

The COVID-19 pandemic caused by the SARS-CoV-2 virus made it necessary to search for new options for both causal treatment and mitigation of its symptoms. Scientists and researchers around the world are constantly looking for the best therapeutic options. These difficult circumstances have also spurred the re-examination of the potential of natural substances contained in Cannabis sativa L. Cannabinoids, apart from CB1 and CB2 receptors, may act multifacetedly through a number of other receptors, such as the GPR55, TRPV1, PPARs, 5-HT1A, adenosine and glycine receptors.

Cannabis for Medical Use: Versatile Plant Rather Than a Single Drug

Here, we discuss how phytocannabinoid profiles differ between plants depending on the chemovar types, review the major factors that affect secondary metabolite accumulation in the plant including the genotype, growth conditions, processing, storage and the delivery route; and highlight how these factors make Cannabis treatment highly complex.

Characteristics of adults with a medical cannabis license, reasons for use, and perceptions of benefit following medical cannabis legalization in Oklahoma

Little is known about the risks and benefits associated with medical cannabis legalization. The current study was an online panel survey of adult Oklahomans recruited between September and October.

Academic-industry partnership advancing cannabis science: A Complementary Care Practice-Based Research Network

Data collected during routine care holds the potential to support hypothesis generation, study feasi- bility, and provide insight regarding how to address problems under real world conditions. Currently there are no practice-based research networks in Florida that focus on complementary care in general or medical marijuana specifically. Through an academic-industry partnership, we sought to develop a practice-based research network focused on cannabis science and create a de-identified database for analyses that support hypothesis generation, study feasibility estimation, and a network that also facilitates recruitment into future research studies.

Medical marijuana knowledge and attitudes amongst internal medicine residents

Mounting evidence suggests the safety and efficacy of medical marijuana (MM) in treating chronic ailments, including chronic pain, epilepsy, and anorexia. Despite incremental use of medical and recreational cannabinoids, current limited evidence shows generalized unpreparedness of medical providers to discuss or recommend these substances to their patients. Herein, the present study aims to examine internal medicine residents’ knowledge of marijuana and their attitude towards its medical use.

Impact of Cannabinoid Compounds on Skin Cancer

Recent research has suggested that the endocannabinoid system offers several pharmacotherapeutic targets for drug administration as new options for the treatment and prophy- laxis of skin cancer. This review focused on the anticarcinogenic mechanisms of cannabinoids at the different levels of skin cancer progression, such as inhibition of tumour growth, proliferation, invasion and angiogenesis, as well as inducing apoptosis and autophagy.

Routes of administration, reasons for use, and approved indications of medical cannabis in oncology: a scoping review

Some patients diagnosed with cancer use medical cannabis to self-manage undesirable symptoms, including nausea and pain. To improve patient safety and oncological care quality, the routes of administration for use of medical cannabis, patients’ reasons, and prescribed indications must be better understood.

Cannabinoids in the management of behavioral, psychological, and motor symptoms of neurocognitive disorders: a mixed studies systematic review

We undertook this systematic review to determine the efficacy and safety of cannabis-based medicine as a treatment for behavioral, psychological, and motor symptoms associated with neurocognitive disorders

Cannabinoids: Therapeutic Use in Clinical Practice

Medical case reports suggest that cannabinoids extracted from Cannabis sativa have ther- apeutic effects; however, the therapeutic employment is limited due to the psychotropic effect of its major component, ∆9-tetrahydrocannabinol (THC). The new scientific discoveries related to the endocannabinoid system, including new receptors, ligands, and mediators, allowed the development of new therapeutic targets for the treatment of several pathological disorders minimizing the undesir- able psychotropic effects of some constituents of this plant. Today, FDA-approved drugs, such as nabiximols (a mixture of THC and non-psychoactive cannabidiol (CBD)), are employed in alleviating pain and spasticity in multiple sclerosis. Dronabinol and nabilone are used for the treatment of chemotherapy-induced nausea and vomiting in cancer patients. Dronabinol was approved for the treatment of anorexia in patients with AIDS (acquired immune deficiency syndrome). In this review, we highlighted the potential therapeutic efficacy of natural and synthetic cannabinoids and their clinical relevance in cancer, neurodegenerative and dermatological diseases, and viral infections.

Cannabis Biomolecule Effects on Cancer Cells and Cancer Stem Cells: Cytotoxic, Anti-Proliferative, and Anti-Migratory Activities

Cancer is a complex family of diseases affecting millions of people worldwide. Gliomas are primary brain tumors that account for ~80% of all malignant brain tumors. Glioblastoma multiforme (GBM) is the most common, invasive, and lethal subtype of glioma. Therapy resistance and intra-GBM tumoral heterogeneity are promoted by subpopulations of glioma stem cells (GSCs). Cannabis sativa produces hundreds of secondary metabolites, such as flavonoids, terpenes, and phytocannabinoids. Around 160 phytocannabinoids have been identified in C. sativa. Cannabis is commonly used to treat various medical conditions, and it is used in the palliative care of cancer patients. The anti-cancer properties of cannabis compounds include cytotoxic, anti-proliferative, and anti-migratory activities on cancer cells and cancer stem cells. The endocannabinoids system is widely distributed in the body, and its dysregulation is associated with different diseases, including various types of cancer. Anti-cancer activities of phytocannabinoids are mediated in glioma cells, at least partially, by the endocannabinoid receptors, triggering various cellular signaling pathways, including the endoplasmic reticulum (ER) stress pathway. Specific combinations of multiple phytocannabinoids act synergistically against cancer cells and may trigger different anti-cancer signaling pathways. Yet, due to scarcity of clinical trials, there remains no solid basis for the anti-cancer therapeutic potential of cannabis compounds.

Endocannabinoid signaling in glioma

High-grade gliomas constitute the most frequent and aggressive form of primary brain cancer in adults. These tumors express cannabinoid CB1 and CB2 receptors, as well as other elements of the endocannabinoid system. Accruing preclinical evidence supports that pharmacological activation of cannabinoid receptors located on glioma cells exerts overt anti-tumoral effects by modulating key intracellular signaling path- ways. The mechanism of this cannabinoid receptor-evoked anti-tumoral activity in experimental models of glioma is intricate and may involve an inhibition not only of cancer cell survival/proliferation, but also of invasiveness, angiogenesis, and the stem cell-like properties of cancer cells, thereby affecting the complex tumor microenvi- ronment. However, the precise biological role of the endocannabinoid system in the generation and progression of glioma seems very context-dependent and remains largely unknown. Increasing our basic knowledge on how (endo)cannabinoids act on glioma cells could help to optimize experimental cannabinoid-based anti-tumoral therapies, as well as the preliminary clinical testing that is currently underway.