Posts

The Neurotherapeutic Arsenal in Cannabis sativa: Insights into Anti-Neuroinflammatory and Neuroprotective Activity and Potential Entourage Effects

Terpenes, aromatic compounds imbuing distinct flavours, not only contribute to cannabis’s sensory profile but also modulate cannabinoid effects through diverse molecular mechanisms. Flavonoids, another cannabis component, demonstrate anti-inflammatory, antioxidant, and neuroprotective properties, particularly relevant to neuroinflammation. The entourage hypothesis posits that combined cannabinoid, terpene, and flavonoid action yields synergistic or additive effects, surpassing individual compound efficacy. Recognizing the nuanced interactions is crucial for unravelling cannabis’s complete therapeutic potential. Tailoring treatments based on the holistic composition of cannabis strains allows optimization of therapeutic outcomes while minimizing potential side effects. This review underscores the imperative to delve into the intricate roles of cannabinoids, terpenes, and flavonoids, offering promising prospects for innovative therapeutic interventions and advocating continued research to unlock cannabis’s full therapeutic potential within the realm of natural plant-based medicine.

Phytochemical investigation of anti-proliferative active fractions of Cannabis sativa leads to isolate a new Compound Canniprene A and other bioactive compounds through bioassay guided fractionation and HPLC assisted puri�cation

Phytocannabinoids and synthetic cannabinoids have been explored as the lead due to their anti-proliferative nature and can be anti-cancer agents. These were found to activate numerous pharmacological targets to generate new therapies in alleviating specic symptoms or delaying the disease of Cancer. However, the comprehensive anti-cancer activities of cannabinoid acids and non-cannabinoids are not fully explored. Herein we report simple extraction, faster bioassay-guided fractionation, and HPLC-assisted purication of bioactive secondary metabolite and their identication.

Antitumor Effects of Cannabis sativa Bioactive Compounds on Colorectal Carcinogenesis

Cannabis sativa is a multipurpose plant that has been used in medicine for centuries. Recently, considerable research has focused on the bioactive compounds of this plant, particularly cannabinoids and terpenes. Among other properties, these compounds exhibit antitumor effects in several cancer types, including colorectal cancer (CRC). Cannabinoids show positive effects in the treatment of CRC by inducing apoptosis, proliferation, metastasis, inflammation, angiogenesis, oxidative stress, and autophagy. Terpenes, such as β-caryophyllene, limonene, and myrcene, have also been reported to have potential antitumor effects on CRC through the induction of apoptosis, the inhibition of cell proliferation, and angiogenesis. In addition, synergy effects between cannabinoids and terpenes are believed to be important factors in the treatment of CRC. This review focuses on the current knowledge about the potential of cannabinoids and terpenoids from C. sativa to serve as bioactive agents for the treatment of CRC while evidencing the need for further research to fully elucidate the mechanisms of action and the safety of these compounds.

Phytocannabinoids in Triple Negative Breast Cancer Treatment: Current Knowledge and Future Insights

Triple negative breast cancer (TNBC) represents an aggressive subtype of breast cancer, which is deficient in estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2) expression. Thus, TNBC cells are unable to respond to the conventional hormonal therapies, making chemotherapy the only therapeutic choice. Patients with TNBC develop metastasis and recurrence over time and have reduced survival compared to patients with other subtypes of breast cancer. Therefore, there is a need for innovative therapies. Data emerged from pre-clinical studies, highlighted various antitumor activities of plant-derived Cannabis sativa and synthetic cannabinoids (CBs), including delta-9-tetrahydrocannabinol (THC) and non-psychoactive cannabidiol (CBD). On the contrary, some studies indicated that CBs might also promote tumor progression. At present, clinical studies on the effects of CBs from Cannabis sativa in cancer patients are few. In the present study, we reviewed known and possible interactions between cannabinoids and TNBC therapies.

The Use of Cannabinoids in the Treatment of Inflammatory Bowel Disease (IBD): A Review of the Literature

Around the world, about 15 to 40% of individuals with inflammatory bowel disease (IBD) rely on cannabis and cannabinoids to reduce the need for other medications, as well as increase appetite and reduce pain. Whereas more and more patients continue to report benefits accruing from cannabis and cannabinoid usage in IBD, agreement relative to the use of cannabis and its derivatives in IBD remains unclear. This paper reviewed the interplay between cannabinoid use and IBD disease treatment, remission, or symptom relief. The study was conducted from a systematic review perspective. It involved consulting literature from published original research articles, noting outcomes, and performing a meta-analysis to identify trends and draw conclusions. The selected articles were those that had been published in a 10-year period ranging between 2012 and 2022. The motivation was to ensure recency and also relevance to contemporary scientific research and clinical environment practices.

Phytochemical Constituents and Derivatives of Cannabis sativa; Bridging the Gap in Melanoma Treatment

Melanoma is deadly, physically impairing, and has ongoing treatment deficiencies. Current treatment regimens include surgery, targeted kinase inhibitors, immunotherapy, and combined approaches. Each of these treatments face pitfalls, with diminutive five-year survival in patients with advanced metastatic invasion of lymph and secondary organ tissues. Polyphenolic compounds, including cannabinoids, terpenoids, and flavonoids; both natural and synthetic, have emerging evidence of nutraceutical, cosmetic and pharmacological potential, including specific anti-cancer, anti-inflammatory, and palliative utility. Cannabis sativa is a wellspring of medicinal compounds whose direct and adjunctive application may offer considerable relief for melanoma suffers worldwide. This review aims to address the diverse applications of C. sativa’s biocompounds in the scope of melanoma and suggest it as a strong candidate for ongoing pharmacological evaluation.

Comparative Investigation of Antimicrobial and Antioxidant Effects of the Extracts from the Inflorescences and Leaves of the Cannabis sativa L. cv. strawberry

Cannabis sativa products have historically been used for healing purposes; now their biological properties are supported with scientific evidence, but modern research has not yet fully developed its therapeutic potential. This study focuses on the cultivar of C. sativa called strawberry to understand the biological and medical potentials of hydroalcoholic extracts from two different parts of the plant: leaves and inflorescences. Two biological assets were investigated including antioxidant and antimicrobial potential.

Phytochemical Constituents and Derivatives of Cannabis sativa; Bridging the Gap in Melanoma Treatment

Schanknecht, E., Bachari, A., Nassar, N., Piva, T., & Mantri, N. (2023). Phytochemical Constituents and Derivatives of Cannabis sativa; Bridging the Gap in Melanoma Treatment. International Journal of Molecular Sciences, 24(1), 859.

Analysis of Anti-Cancer and Anti-Inflammatory Properties of 25 High-THC Cannabis Extracts

Cannabis sativa is one of the oldest cultivated plants. Many of the medicinal properties of cannabis are known, although very few cannabis-based formulations became prescribed drugs. Previous research demonstrated that cannabis varieties are very different in their medicinal properties, likely due to the entourage effect—the synergistic or antagonistic effect of various cannabinoids and terpenes. In this work, we analyzed 25 cannabis extracts containing high levels of delta-9- tetrahydrocannabinol (THC). We used HCC1806 squamous cell carcinoma and demonstrated various degrees of efficiency of the tested extracts, from 66% to 92% of growth inhibition of cancer cells. Inflammation was tested by induction of inflammation with TNF-α/IFN-γ in WI38 human lung fibroblasts.

Cannabis sativa and Cannabidiol: A Therapeutic Strategy for the Treatment of Neurodegenerative Diseases?

This work is a literature review, presenting the current state of the use of cannabinoids on neurodegenerative diseases. The emphasis is on Parkinson’s (PD) and Alzheimer’s (AD) diseases, the two most prevalent neurological diseases. The review goes from Cannabis sativa and its hundreds of bioactive compounds to Δ9-tetrahydrocannabinol (THC) and mainly cannabidiol (CBD) and their interactions with the endocannabinoid receptors (CB1 and CB2).

Minor Cannabinoids: Biosynthesis, Molecular Pharmacology and Potential Therapeutic Uses

The medicinal use of Cannabis sativa L. can be traced back thousands of years to ancient China and Egypt. While marijuana has recently shown promise in managing chronic pain and nausea, scientific investigation of cannabis has been restricted due its classification as a schedule 1 controlled substance.

Anti-Inflammatory and Antiviral Effects of Cannabinoids in Inhibiting and Preventing SARS-CoV-2 Infection

The COVID-19 pandemic caused by the SARS-CoV-2 virus made it necessary to search for new options for both causal treatment and mitigation of its symptoms. Scientists and researchers around the world are constantly looking for the best therapeutic options. These difficult circumstances have also spurred the re-examination of the potential of natural substances contained in Cannabis sativa L. Cannabinoids, apart from CB1 and CB2 receptors, may act multifacetedly through a number of other receptors, such as the GPR55, TRPV1, PPARs, 5-HT1A, adenosine and glycine receptors.