Targeting Trauma-Induced Endocannabinoid System Dysfunction: A Novel Neuroprotective Approach For Traumatic Brain Injury

Traumatic brain injury (TBI) is a leading cause of death and disability worldwide. The primary injury results in neuronal damage and initiates secondary injuries like neuroinflammation, excitotoxicity, oxidative stress and blood-brain barrier disruption. This results in long-term cognitive, behavioral and motor deficits. Existing therapeutic options for TBI focus on symptomatic management rather than directly addressing the cellular processes that drive secondary damage. Novel neuroprotective therapies are urgently needed. The endocannabinoid system (ECS) is a promising therapeutic target for TBI. The ECS comprises the endocannabinoids anandamide and 2-AG, cannabinoid receptors CB1 and CB2, and metabolic enzymes like fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL). It is involved in synaptic function, neuroinflammation, excitotoxicity, blood-brain barrier disruption, oxidative stress and neuronal loss. Modulation the ECS through receptor agonists/antagonists, inhibitors of endocannabinoid catabolism, or combination approaches represents a novel neuroprotective strategy in TBI.

Cannabidiol’s neuroprotective properties and potential treatment of traumatic brain injuries

Cannabidiol (CBD) has numerous pharmacological targets that initiate anti-inflammatory, antioxidative, and antiepileptic properties. These neuroprotective benefits have generated interest in CBD’s therapeutic potential against the secondary injury cascade from traumatic brain injury (TBI). There are currently no effective broad treatment strategies for combating the damaging mechanisms that follow the primary injury and lead to lasting neurological consequences or death. However, CBD’s effects on different neurotransmitter systems, the blood brain barrier, oxidative stress mechanisms, and the inflammatory response provides mechanistic support for CBD’s clinical utility in TBI. This review describes the cascades of damage caused by TBI and CBD’s neuroprotective mechanisms to counter them. We also present challenges in the clinical treatment of TBI and discuss important future clinical research directions for integrating CBD in treatment protocols. The mechanistic evidence provided by pre-clinical research shows great potential for CBD as a much-needed improvement in the clinical treatment of TBI. Upcoming clinical trials sponsored by major professional sport leagues are the first attempts to test the efficacy of CBD in head injury treatment protocols and highlight the need for further clinical research.

Endocannabinoid Metabolism and Traumatic Brain Injury

Traumatic brain injury (TBI) represents a major cause of morbidity and disability and is a risk factor for developing neurodegenerative diseases, including Alzheimer’s disease (AD). However, no effective therapies are currently available for TBI-induced AD-like disease. Endocannabinoids are endogenous lipid mediators involved in a variety of physiological and pathological processes. The compound 2-arachidonoylglycerol (2-AG) is the most abundant endocannabinoid with profound anti-inflammatory and neuroprotective properties.