Identification of Anti-Neuroinflammatory Bioactive Compounds in Essential Oils and Aqueous Distillation Residues Obtained from Commercial Varieties of Cannabis sativa L.

Neuroinflammation, which is mainly triggered by microglia, is a key contributor to multiple neurodegenerative diseases. Natural products, and in particular Cannabis sativa L., due to its richness in phytochemical components, represent ideal candidates to counteract neuroinflammation. We previously characterized different C. sativa commercial varieties which showed significantly different chemical profiles. On these bases, the aim of this study was to evaluate essential oils and aqueous distillation residues from the inflorescences of three different hemp varieties for their anti-neuroinflammatory activity in BV-2 microglial cells. Cells were pretreated with aqueous residues or essential oils and then activated with LPS. Unlike essential oils, aqueous residues showed negligible effects in terms of anti-inflammatory activity. Among the essential oils, the one obtained from ‘Gorilla Glue’ was the most effective in inhibiting pro-inflammatory mediators and in upregulating anti-inflammatory ones through the modulation of the p38 MAPK/NF-κB pathway. Moreover, the sesquiterpenes (E)-caryophyllene, α-humulene, and caryophyllene oxide were identified as the main contributors to the essential oils’ anti-inflammatory activity. To our knowledge, the anti-neuroinflammatory activity of α-humulene has not been previously described. In conclusion, our work shows that C. sativa essential oils characterized by high levels of sesquiterpenes can be promising candidates in the prevention/counteraction of neuroinflammation.

Assessing Cannabidiol as a Therapeutic Agent for Preventing and Alleviating Alzheimer’s Disease Neurodegeneration

To investigate the therapeutic efficacy of CBD in AD and to elucidate its underlying mechanisms, we aimed to contribute valuable insights for incorporating AD prevention recommendations into future CBD nutritional guidelines. Aβ1–42 was employed for in vivo or in vitro model establishment, CBD treatment was utilized to assess the therapeutic efficacy of CBD, and RNA-seq analysis was conducted to elucidate the underlying therapeutic mechanism. CBD mitigates Aβ-induced cognitive deficits by modulating microglial activity, promoting neurotrophic factor release, and regulating inflammatory genes.

Neuroinflammation, Its Role in Alzheimer’s Disease and Therapeutic Strategies

Neuroinflammation precedes the clinical onset of various neurodegenerative diseases, including Alzheimer’s disease (AD), by years or frequently even decades (1–3). In terms of the underlying physiology, there is a great need for understanding and controlling interactions between the central nervous system (CNS) and the immune system in an attempt to develop approaches to prevent or delay the disease’s progression. Nerve cells have limited motion capability, whereas immune cells can migrate freely via circulation. This difference raises a variety of questions in the context of senile plaque formation and phagocytosis. Broad-scale unbiased genomic studies bring several genetic variants such as sialic acid binding Ig-like lectin 3 (CD33), triggering receptor expressed on myeloid cells 2 (TREM2) or complement receptor type 1 (CR1) into the focus of researchers’ attention as potential risk factors for neuroinflammation. In addition, advanced proteomic analyses have been revealing links between these genetic contributors and complex, malfunctioning signaling pathways (including the upregulation of factors like tumor necrosis factor TNF-α, tumor growth factor TGF-β and interleukin IL-1α) that promote proinflammatory mechanisms via intracellular signaling and trafficking, synaptic function, and cell metabolism/proliferation.

Pharmacological blockade of 2-AG degradation ameliorates clinical, neuroinflammatory and synaptic alterations in experimental autoimmune encephalomyelitis

The endocannabinoid system (ECS) is critically involved in the pathophysiology of Multiple Sclerosis (MS), a neuroinflammatory and neurodegenerative disease of the central nervous system (CNS). Over the past decade, the neuroprotective and anti-inflammatory effects of the ECS have been studied, and inhibiting the degradation of the endocannabinoid 2-arachydonoylglycerol (2-AG) is emerging as a promising strategy to counteract brain damage in MS. In this study, a systemic and preventive in vivo treatment with MAGLi 432, the reversible inhibitor of monoacylglycerol lipase (MAGLi), was performed in experimental autoimmune encephalomyelitis (EAE) mice. Clinical, biochemical, electrophysiological and immunofluorescence analyses were carried out to evaluate the impact of the drug on motor disability, neuroinflammation and synaptic damage. MAGLi 432 induced a less severe EAE disease, accompanied by an increase of 2-AG and a reduction of acid arachidonic (AA) and prostaglandins (PGs) brain levels.

Low Doses of β-Caryophyllene Reduced Clinical and Paraclinical Parameters of an Autoimmune Animal Model of Multiple Sclerosis: Investigating the Role of CB2 Receptors in Inflammation by Lymphocytes and Microglial

Multiple Sclerosis (MS) is a prevalent inflammatory disease in which the immune system plays an essential role in the damage, inflammation, and demyelination of central nervous system neurons (CNS). The cannabinoid receptor type 2 (CB2) agonists possess anti-inflammatory effects against noxious stimuli and elevate the neuronal survival rate. We attempted to analyze the protective impact of low doses of β-Caryophyllene (BCP) in experimental autoimmune encephalomyelitis (EAE) mice as a chronic MS model. Immunization of female C57BL/6 mice was achieved through two subcutaneous injections into different areas of the hind flank with an emulsion that consisted of myelin Myelin oligodendrocyte glycoprotein (MOG)35–55 (150 µg) and complete Freund’s adjuvant (CFA) (400 µg) with an equal volume. Two intraperitoneal (i.p.) injections of pertussis toxin (300 ng) were performed on the animals on day zero (immunizations day) and 48 h (2nd day) after injection of MOG + CFA. The defensive effect of low doses of BCP (2.5 and 5 mg/kg/d) was investigated in the presence and absence of a CB2 receptor antagonist (1 mg/kg, AM630) in the EAE model. We also examined the pro/anti-inflammatory cytokine levels and the polarization of brain microglia and spleen lymphocytes in EAE animals. According to our findings, low doses of BCP offered protective impacts in the EAE mice treatment in a CB2 receptor-dependent way. In addition, according to results, BCP decreased the pathological and clinical defects in EAE mice via modulating adaptive (lymphocytes) and innate (microglia) immune systems from inflammatory phenotypes (M1/Th1/Th17) to anti-inflammatory (M2/Th2/Treg) phenotypes. Additionally, BCP elevated the anti-inflammatory cytokine IL-10 and reduced blood inflammatory cytokines. BCP almost targeted the systemic immune system more than the CNS immune system. Thus, a low dose of BCP can be suggested as a therapeutic effect on MS treatment with potent anti-inflammatory effects and possibly lower toxicity.

Therapeutic Potential of Phytocannabinoid Cannabigerol for Multiple Sclerosis: Modulation of Microglial Activation In Vitro and In Vivo

Multiple sclerosis (MS) is a widespread chronic neuroinflammatory and neurodegenerative disease. Microglia play a crucial role in the pathogenesis of MS via the release of cytokines and reactive oxygen species, e.g., nitric oxide. Research involving the role of phytocannabinoids in neuroinflammation is currently receiving much attention. Cannabigerol is a main phytocannabinoid, which has attracted significant pharmacological interest due to its non-psychotropic nature. In this research, we studied the effects of cannabigerol on microglial inflammation in vitro, followed by an in vivo study. Cannabigerol attenuated the microglial production of nitric oxide in BV2 microglia and primary glial cells; concomitant treatment of the cells with cannabigerol and telmisartan (a neuroprotective angiotensin receptor blocker) decreased nitric oxide production additively. Inducible nitric oxide synthase (iNOS) expression was also reduced by cannabigerol.

Novel Insights into the Immunomodulatory Effects of Caryophyllane Sesquiterpenes: A Systematic Review of Preclinical Studies

Immunomodulation is a key factor in the homeostasis of organisms, both for physiological and inflammatory conditions. In this context, great attention has been devoted to immunomodulant agents, which can boost or modulate the immune system, thus favoring disease relief. The present systematic review is focused on the immunomodulatory properties of plant-based caryophyllane sesquiterpenes, which are unique natural compounds widely studied due to their multiple and pleiotropic bioactivities. Despite lacking clinical evidence, the selected studies highlighted the ability of these substances, especially β-caryophyllene and α-humulene, to modulate the immune system of both in vitro and in vivo models of disease, such as neurodegenerative and inflammatory- based diseases, cancer, and allergies; moreover, some mechanistic hypotheses have been made too. The present overview suggests a further interest in immunomodulation by caryophyllane sesquiterpenes as a possible novel strategy for immune-based diseases or as an adjuvant treatment…