The Effect of Cannabis Plant Extracts on Head and Neck Squamous Cell Carcinoma and the Quest for Cannabis-Based Personalized Therapy

The survival rate of head and neck cancer has only improved slightly over the last quarter century, raising the need for novel therapies to better treat this disease. This research examined the anti-tumor effects of 24 different types of cannabis extracts on head and neck cancer cells. Type III decarboxylated extracts with high levels of Cannabidiol (CBD) were the most effective in killing cancer cells. From these extracts, the specific active molecules were recognized. Combining CBD with Cannabichromene (CBC) in a 2:1 ratio made the effect even stronger. These findings can help doctors match cannabis extracts to treat head and neck cancer. CBD extracts enriched with the non-psychoactive CBC can offer patients more effective treatment. Further research is needed to develop new topical treatments from such extracts.

Therapeutic and Supportive Effects of Cannabinoids in Patients with Brain Tumors (CBD Oil and Cannabis)

The potential medicinal properties of Cannabis continue to garner attention, especially in the brain tumor domain. This attention is centered on quality of life and symptom management; however, it is amplified by a significant lack of therapeutic choices for this specific patient population. While the literature on this matter is young, published and anecdotal evidence imply that cannabis could be useful in treating chemotherapy-induced nausea and vomiting, stimulating appetite, reducing pain, and managing seizures. It may also decrease inflammation and cancer cell proliferation and survival, resulting in a benefit in overall patient survival. Current literature poses the challenge that it does not provide standardized guidance on dosing for the above potential indications and cannabis use is dominated by recreational purposes. Furthermore, integrated and longitudinal studies are needed but these are a challenge due to arcane laws surrounding the legality of such substances. The increasing need for evidence-based arguments about potential harms and benefits of cannabis, not only in cancer patients but for other medical use and recreational purposes, is desperately needed.

Heterogeneity in hormone-dependent breast cancer and therapy: Steroid hormones, HER2, melanoma antigens, and cannabinoid receptors

Breast cancer is the most frequently diagnosed cancer and the leading cause of death by cancer among women worldwide. The prognosis of the disease and patients’ response to different types of therapies varies in different subgroups of this heterogeneous disease. The subgroups are based on histological and molecular characteristics of the tumor, especially the expression of estrogen (ER) and progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2). Hormone-dependent breast cancer, determined predominantly by the presence of ER, is the most common type of breast cancer. Patients with hormone-dependent breast cancer have an available targeted therapy, however, tumor cells can develop resistance to the therapy, which is a major obstacle limiting the success of treatment and enabling relapse to metastatic disease.

Medicinal cannabis for patients with chronic non-cancer pain: analysis of safety and concomitant medications

This study aimed to explore the incidence of adverse events (AEs) reported by patients when initiating medicinal cannabis treatment for chronic pain, and the association of cannabis constituents, dose and concomitant medicines with AE incidence.

Analysis of Anti-Cancer and Anti-Inflammatory Properties of 25 High-THC Cannabis Extracts

Cannabis sativa is one of the oldest cultivated plants. Many of the medicinal properties of cannabis are known, although very few cannabis-based formulations became prescribed drugs. Previous research demonstrated that cannabis varieties are very different in their medicinal properties, likely due to the entourage effect—the synergistic or antagonistic effect of various cannabinoids and terpenes. In this work, we analyzed 25 cannabis extracts containing high levels of delta-9- tetrahydrocannabinol (THC). We used HCC1806 squamous cell carcinoma and demonstrated various degrees of efficiency of the tested extracts, from 66% to 92% of growth inhibition of cancer cells. Inflammation was tested by induction of inflammation with TNF-α/IFN-γ in WI38 human lung fibroblasts.

The Cytotoxic Effect of Isolated Cannabinoid Extracts on Polypoid Colorectal Tissue

Purified cannabinoids have been shown to prevent proliferation and induce apoptosis in colorectal carcinoma cell lines. To assess the cytotoxic effect of cannabinoid extracts and purified cannabinoids on both colorectal polyps and normal colonic cells, as well as their synergistic interaction. Various blends were tested to identify the optimal synergistic effect. Methods: Biopsies from polyps and healthy colonic tissue were obtained from 22 patients undergoing colonic polypectomies. The toxicity of a variety of cannabinoid extracts and purified cannabinoids at different concentrations was evaluated. The synergistic effect of cannabinoids was calculated based on the cells’ survival.

Pharmacological management of cancer pain: Novel therapeutics

Patients diagnosed with cancer often experience pain during their treatment course, making it difficult to care for themselves and continue with their activities of daily living. When cancer is found at later stages, the pain can become severe and constant; reducing their quality of life and significantly affecting mental and physical well-being. Despite opioids being known to provide adequate analgesia for higher pain levels, they are often the reason for under-dosing because of their adverse effects and concern for addiction. There are also patients who do not respond well to opioids because of genetic anomalies or personal preference. Therefore, there is a need for novel non-opioid cancer pain treatments. There are many new cancer pain treatments that are emerging. This manuscript discusses cancer pain, risk factors, epidemiology, guidelines for the treatment of cancer pain, personalization of cancer pain therapy, breakthrough pain, cancer-induced peripheral neuropathy, established cancer pain treatment options, and novel emerging cancer pain treatment options.

Cannabidiol exerts anti-proliferative activity via a cannabinoid receptor 2-dependent mechanism in human colorectal cancer cells

Colorectal cancer is the third leading cause of cancer incidence and mortality in the United States. Cannabidiol (CBD), the second most abundant phytocannabinoid in Cannabis sativa, has potential use in cancer treatment on the basis of many studies showing its anti-cancer activity in diverse types of cancer, including colon cancer. However, its mechanism of action is not yet fully understood. In the current study, we observed CBD to repress viability of different human colorectal cancer cells in a dose-dependent manner. CBD treatment led to G1-phase cell cycle arrest and an increased sub-G1 population (apoptotic cells); it also downregulated protein expression of cyclin D1, cyclin D3, cyclin-dependent kinase 2 (CDK2), CDK4, and CDK6. CBD further increased caspase 3/7 activity and cleaved poly(ADP-ribose) polymerase, and elevated expression of endoplasmic reticulum (ER) stress proteins including binding immunoglobulin protein (BiP), inositol-requiring enzyme 1α (IRE1α), phosphorylated eukaryotic initiation factor 2α (eIF2α), activating transcription factor 3 (ATF3), and ATF4.

Use of Medicinal Cannabis for Palliative Care Patients: A Systematic Review

Medical cannabis is a rapidly growing area of medicine. In this sense, due to the numerous benefits associated with its use, it has been increasingly proposed for patients in palliative care, in which the improvement of debilitating symptoms is directly associated with better quality of life. However, due to the complexity of treatments for these individuals, further studies are needed to determine the best possible prescription for them.

Raising awareness: The implementation of medical cannabis and psychedelics used as an adjunct to standard therapy in the treatment of advanced metastatic breast cancer

A 49-year-old woman was diagnosed with an ER + , PR-, HER2 + , BRCA- invasive ductal carcinoma which progressed metastatically to include bone, liver, and lymph node involvement. Standardised care included a 26-month treatment period with targeted chemotherapy and a ketogenic diet. The patient also began a course of cannabinoid-based therapy, consisting initially of a titrated high-dose protocol of mixed cannabidiol (CBD) and d9-tetrahydrocannabinol (THC) chemotypes, as well as psilocybin-assisted psychotherapy at macro and intermittent micro-doses. At the end of the five-month treatment period PET/CT investigations revealed no evidence of metastatic disease and chemotherapy was withdrawn.

The Effectiveness and Safety of Medical Cannabis for Treating Cancer Related Symptoms in Oncology Patients

The use of medical cannabis (MC) to treat cancer-related symptoms is rising. However, there is a lack of long-term trials to assess the benefits and safety of MC treatment in this population. In this work, we followed up prospectively and longitudinally on the effectiveness and safety of MC treatment. Oncology patients reported on multiple symptoms before and after MC treatment initiation at one-, three-, and 6-month follow-ups. Oncologists reported on the patients’ disease characteristics. Intention-to-treat models were used to assess changes in outcomes from baseline. MC treatment was initiated by 324 patients and 212, 158 and 126 reported at follow-ups. Most outcome measures improved significantly during MC treatment for most patients (p < 0.005). Specifically, at 6 months, total cancer symptoms burden declined from baseline by a median of 18%, from 122 (82–157) at baseline to 89 (45–138) at endpoint (−18.98; 95%CI= −26.95 to −11.00; p < 0.001). Reported adverse effects were common but mostly non-serious and remained stable during MC treatment. The results of this study suggest that MC treatment is generally safe for oncology patients and can potentially reduce the burden of associated symptoms with no serious MC-related adverse effects.

The chemical composition of ethanolic extracts from six genotypes of medical cannabis (Cannabis sativa L.) and their selective cytotoxic activity

Cannabis (Cannabis sativa L.) for medical purposes has been legalized again in many countries in recent years. Currently, only two major cannabinoids (Δ9-THC and CBD) are considered in the legislation and medication, which is not sufficient in case of dried plant material or resulting extract. Other substances (mainly terpenes/terpenoids), or their specific combinations, could influence the resulting therapeutic effect for specific oncology diagnosis and specific patients. Six different genotypes (Conspiracy Kush, Jilly Bean, Jack Cleaner 2, Jack Skellington, Nordle and Nurse Jackie) were cultivated indoor at the Czech University of Life Sciences Prague. Ethanol extracts taken from the inflorescences were assayed for their content of main cannabinoids and terpenes/terpenoids. The extracts were used for in vitro cytotoxicity studies on hepatocarcinoma human cell lines Hep-G2 and colorectal carcinoma human cell lines Caco-2 and Ht-29.