Used to classify article posts by terms used for medical conditions. It’s mostly aimed at practitioners and physicians.

The Use of Cannabinoids in Pediatric Palliative Care—A Retrospective Single-Center Analysis

This data analysis aimed to systematically analyze a pediatric patient population with a life-limiting disease who were administered cannabinoids. It was a retrospective single-center analysis of patients under supervision of the specialized outpatient pediatric palliative care (SOPPC) team at the Department of Pediatrics and Adolescent Medicine of the Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU). Thirty-one patients with a primary diagnosis of neuropediatric, oncologic, metabolic, and cardiologic categories were included. The indications we identified were spasticity, pain, restlessness, anxiety, loss of appetite, epilepsy, and paresis. Certain aspects of quality of life were improved for 20 of 31 patients (64.5%). For nine patients (29%), no improvement was detected. No conclusions could be drawn for two patients (6.5%). Adverse events were reported for six of the thirty-one patients (19.4%). These were graded as mild, including symptoms such as restlessness, nausea, and behavioral issues. We detected no clinically relevant interactions with other medications. We collected fundamental data on the use of cannabinoids by pediatric palliative patients. Cannabinoids are now frequently administered in pediatric palliative care. They seem to be safe to use and should be considered an add-on therapy for other drug regimens.

Unveiling the Potential of Cannabinoids in Multiple Sclerosis and the Dawn of Nano-Cannabinoid Medicine

Multiple sclerosis is the predominant autoimmune disorder affecting the central nervous system in adolescents and adults. Specific treatments are categorized as disease-modifying, whereas others are symptomatic treatments to alleviate painful symptoms. Currently, no singular conventional therapy is universally effective for all patients across all stages of the illness. Nevertheless, cannabinoids exhibit significant promise in their capacity for neuroprotection, anti-inflammation, and immunosuppression. This review will examine the traditional treatment for multiple sclerosis, the increasing interest in using cannabis as a treatment method, its role in protecting the nervous system and regulating the immune system, commercially available therapeutic cannabinoids, and the emerging use of cannabis in nanomedicine. In conclusion, cannabinoids exhibit potential as a disease-modifying treatment rather than merely symptomatic relief. However, further research is necessary to unveil their role and establish the safety and advancements in nano-cannabinoid medicine, offering the potential for reduced toxicity and fewer adverse effects, thereby maximizing the benefits of cannabinoids.

Tetrahydrocannabinol and Cannabidiol for Pain Treatment—An Update on the Evidence

In light of the current International Association for the Study of Pain (IASP) clinical practice guidelines (CPGs) and the European Society for Medical Oncology (ESMO) guidelines, the topic of cannabinoids in relation to pain remains controversial, with insufficient research presently available. Cannabinoids are an attractive pain management option due to their synergistic effects when administered with opioids, thereby also limiting the extent of respiratory depression. On their own, however, cannabinoids have been shown to have the potential to relieve specific subtypes of chronic pain in adults, although controversies remain. Among these subtypes are neuropathic, musculoskeletal, cancer, and geriatric pain. Another interesting feature is their effectiveness in chemotherapy-induced peripheral neuropathy (CIPN). Analgesic benefits are hypothesized to extend to HIV-associated neuropathic pain, as well as to lower back pain in the elderly. The aim of this article is to provide an up-to-date review of the existing preclinical as well as clinical studies, along with relevant systematic reviews addressing the roles of various types of cannabinoids in neuropathic pain settings.

Cannabidiol and brain function: current knowledge and future perspectives

Cannabidiol (CBD) is a naturally occurring non-psychoactive cannabinoid found in Cannabis sativa, commonly known as cannabis or hemp. Although currently available CBD products do not meet the safety standards of most food safety authorities to be approved as a dietary supplement or food additive, CBD has been gaining widespread attention in recent years due to its various potential health benefits. While primarily known for its therapeutic effects in managing epileptic seizures, psychosis, anxiety, (neuropathic) pain, and inflammation, CBD’s influence on brain function has also piqued the interest of researchers and individuals seeking to enhance cognitive performance. The primary objective of this review is to gather, synthesize, and consolidate scientifically proven evidence on the impact of CBD on brain function and its therapeutic significance in treating neurological and mental disorders. First, basic background information on CBD, including its biomolecular properties and mechanisms of action is presented. Next, evidence for CBD effects in the human brain is provided followed by a discussion on the potential implications of CBD as a neurotherapeutic agent.

Cannabis by any name does not smell as sweet: potential cardiovascular events with medical cannabis

Recently, attitudes towards cannabis and its use have changed dramatically and continue to evolve worldwide. In 2014, many states in the USA started legalizing cannabis, thus increasing the availability of medical and recreational cannabis and creating an entire cannabis industry with dispensaries on many street corners.1 Within most of the European Union (EU), cannabis remains illegal; however, recently many countries have begun to legalize cannabis for limited therapeutic purposes. Countries such as Germany, the Czech Republic, Denmark, Germany, Italy, and Poland now permit the cultivation of cannabis for medical purposes, with the cultivation and subsequent processing taking place under the usually strict rules applicable to agricultural, manufacturing, distribution, security, and clinical good practice.2 Close pharmacovigilance of cannabis, as well as its safety and efficacy, have been limited by decades of worldwide illegality and by the ongoing classification of cannabis as a Schedule 1 controlled substance in the USA. Nonetheless, with increased cannabis decriminalization and legalization across the globe, the association between cannabis exposure and incident cardiovascular (CV) events has emerged as an important safety signal.

Cannabis for chronic pain: cardiovascular safety in a nationwide Danish study

A rising number of countries allow physicians to treat chronic pain with medical cannabis. However, recreational cannabis use has been linked with cardiovascular side effects, necessitating investigations concerning the safety of prescribed medical cannabis. Using nationwide Danish registers, patients with chronic pain initiating first-time treatment with medical cannabis during 2018–21 were identified and matched 1:5 to corresponding control patients on age, sex, chronic pain diagnosis, and concomitant use of other pain medication. The absolute risks of first-time arrhythmia (atrial fibrillation/flutter, conduction disorders, paroxysmal tachycardias, and ventricular arrhythmias) and acute coronary syndrome were reported comparing medical cannabis use with no use.

Role of Cannabinoids in Oral Cancer

Cannabinoids have incited scientific interest in different conditions, including malignancy, due to increased exposure to cannabis. Furthermore, cannabinoids are increasingly used to alleviate cancer-related symptoms. This review paper aims to clarify the recent findings on the relationship between cannabinoids and oral cancer, focusing on the molecular mechanisms that could link cannabinoids with oral cancer pathogenesis. In addition, we provide an overview of the current and future perspectives on the management of oral cancer patients using cannabinoid compounds. Epidemiological data on cannabis use and oral cancer development are conflicting. However, in vitro studies assessing the effects of cannabinoids on oral cancer cells have unveiled promising anti-cancer features, including apoptosis and inhibition of cell proliferation. Downregulation of various signaling pathways with anti-cancer effects has been identified in experimental models of oral cancer cells exposed to cannabinoids. Furthermore, in some countries, several synthetic or phytocannabinoids have been approved as medical adjuvants for the management of cancer patients undergoing chemoradiotherapy. Cannabinoids may improve overall well-being by relieving anxiety, depression, pain, and nausea. In conclusion, the link between cannabinoid compounds and oral cancer is complex, and further research is necessary to elucidate the potential risks or their protective impact on oral cancer.

The Neurotherapeutic Arsenal in Cannabis sativa: Insights into Anti-Neuroinflammatory and Neuroprotective Activity and Potential Entourage Effects

Terpenes, aromatic compounds imbuing distinct flavours, not only contribute to cannabis’s sensory profile but also modulate cannabinoid effects through diverse molecular mechanisms. Flavonoids, another cannabis component, demonstrate anti-inflammatory, antioxidant, and neuroprotective properties, particularly relevant to neuroinflammation. The entourage hypothesis posits that combined cannabinoid, terpene, and flavonoid action yields synergistic or additive effects, surpassing individual compound efficacy. Recognizing the nuanced interactions is crucial for unravelling cannabis’s complete therapeutic potential. Tailoring treatments based on the holistic composition of cannabis strains allows optimization of therapeutic outcomes while minimizing potential side effects. This review underscores the imperative to delve into the intricate roles of cannabinoids, terpenes, and flavonoids, offering promising prospects for innovative therapeutic interventions and advocating continued research to unlock cannabis’s full therapeutic potential within the realm of natural plant-based medicine.

Integrative Oncology Approaches to Supporting Immune Checkpoint Inhibitor Treatment of Solid Tumours

The goal of this review was to examine the role and practical applications of integrative oncology strategies in supporting immune checkpoint inhibitor (ICI) treatment of adult solid tumours.

Recent Findings Beyond tumour-intrinsic factors, several patient-associated factors afect ICI response, including germline genetics, systemic infammation, the gut microbiota, and diet. Current promising supportive interventions include a Mediterranean-style diet with over 20 g of fbre, regular exercise, use of live biotherapeutics, minimisation of PPI and antibiotic use, and ensuring vitamin D repletion, with many other integrative oncology approaches under study. Caution around medical cannabis use in patients on ICIs is advised due to previously documented adverse impact on overall survival, while VAE (Viscum album extract) therapy studies have not highlighted any safety concerns so far.

Cannabis for medical use versus opioids for chronic non-cancer pain: a systematic review and network meta-analysis of randomised clinical trials

The objective of this study is to evaluate the comparative benefits and harms of opioids and cannabis for medical use for chronic non-cancer pain.Randomised trials comparing any type of cannabis for medical use or opioids, against each other or placebo, with patient follow-up ≥4 weeks.

Research progress in the management of vascular disease with cannabidiol: a review

The morbidity and mortality rates associated with vascular disease (VD) have been gradually increasing. Currently, the most common treatment for VD is surgery, with the progress in drug therapy remaining slow. Cannabidiol (CBD) is a natural extract of Cannabis sativa L. with sedative, analgesic, and nonaddictive properties. CBD binds to 56 cardiovascular-related receptors and exerts extensive regulatory effects on the cardiovascular system, making it a potential pharmacological agent for the management of VD. However, most CBD studies have focused on neurological and cardiac diseases, and research on the management of VD with CBD is still rare. In this review, we summarize the currently available data on CBD in the management of VD, addressing four aspects: the major molecular targets of CBD in VD management, pharmacokinetic properties, therapeutic effects of CBD on common VDs, and side effects. The findings indicate that CBD has anti-anxiety, anti-oxidation, and anti-inflammatory properties and can inhibit abnormal proliferation and apoptosis of vascular smooth muscle and endothelial cells; these effects suggest CBD as a therapeutic agent for atherosclerosis, stress-induced hypertension, diabetes-related vasculopathy, ischemia-reperfusion injury, and vascular damage caused by smoking and alcohol abuse. This study provides a theoretical basis for further research on CBD in the management of VD.

Individuals’ Values and Preferences Regarding Medical Cannabis for Chronic Pain: A Descriptive Qualitative Study

In Canada, cannabis for medical reasons has been legal since 2001. It has been used as one of the many strategies for chronic or ongoing pain, but doctors are not given consistent information regarding its use, and existing guidance does not include the patient point of view. We did this study to explore how people living with chronic pain feel about the use of medical cannabis. We asked 52 people living with chronic pain, including current medical cannabis users, previous users, and non-users. We found that many people who used cannabis for their pain had to experiment to determine what cannabis products, routes, and doses worked for them. Benefits of medical cannabis included relief from pain, better sleep, and improved mental health. Reasons for stopping medical cannabis included no to little improvement in pain and/or sleep or the presence of unwanted side effects. Cannabidiol (CBD) products resulted in fewer unwanted effects (eg, physical or mental impairment) compared to tetrahydrocannabinol (THC) products. People discussed different routes of cannabis use including oral routes that provided longer-lasting pain relief but with a slower onset and inhaled routes with a faster onset of relief but with shorter-lived effects. People’s decisions regarding medical cannabis use for chronic pain were varied, suggesting these decisions are likely to be sensitive to individual’s values and preferences. More research is needed to learn what doses, products, and routes work for specific chronic pain conditions.