Scientific Validation of Cannabidiol for Management of Dog and Cat Diseases

Cannabidiol (CBD) is a non-psychotropic phytocannabinoid of the plant Cannabis sativa L. CBD is increasingly being explored as an alternative to conventional therapies to treat health disorders in dogs and cats. Mecha- nisms of action of CBD have been investigated mostly in rodents and in vitro and include modulation of CB1, CB2, 5-HT, GPR, and opioid receptors. In companion animals, CBD appears to have good bioavailability and safety profile with few side effects at physiological doses. Some dog studies have found CBD to improve clinical signs associated with osteoarthritis, pruritus, and epilepsy. However, further studies are needed to conclude a therapeu- tic action of CBD for each of these conditions, as well as for decreasing anxiety and aggression in dogs and cats. Herein, we summarize the avail- able scientific evidence associated with the mechanisms of action of CBD, including pharmacokinetics, safety, regulation, and efficacy in ameliorating various health conditions in dogs and cats.

Scientific Validation of Cannabidiol for Management of Dog and Cat Diseases

Cannabidiol (CBD) is a non-psychotropic phytocannabinoid of the plant Cannabis sativa L. CBD is increasingly being explored as an alternative to conventional therapies to treat health disorders in dogs and cats. Mecha- nisms of action of CBD have been investigated mostly in rodents and in vitro and include modulation of CB1, CB2, 5-HT, GPR, and opioid receptors. In companion animals, CBD appears to have good bioavailability and safety profile with few side effects at physiological doses. Some dog studies have found CBD to improve clinical signs associated with osteoarthritis, pruritus, and epilepsy. However, further studies are needed to conclude a therapeu- tic action of CBD for each of these conditions, as well as for decreasing anxiety and aggression in dogs and cats. Herein, we summarize the avail- able scientific evidence associated with the mechanisms of action of CBD, including pharmacokinetics, safety, regulation, and efficacy in ameliorating various health conditions in dogs and cats.

Cannabidiol: Bridge between Antioxidant Effect, Cellular Protection, and Cognitive and Physical Performance

The literature provides scientific evidence for the beneficial effects of cannabidiol (CBD), and these effects extend beyond epilepsy treatment (e.g., Lennox–Gastaut and Dravet syndromes), notably the influence on oxidative status, neurodegeneration, cellular protection, cognitive function, and physical performance. However, products containing CBD are not allowed to be marketed everywhere in the world, which may ultimately have a negative effect on health as a result of the uncontrolled CBD market. After the isolation of CBD follows the discovery of CB1 and CB2 receptors and the main enzymatic components (diacylglycerol lipase (DAG lipase), monoacyl glycerol lipase (MAGL), fatty acid amino hydrolase (FAAH)).

A Retrospective Medical Record Review of Adults with Non-Cancer Diagnoses Prescribed Medicinal Cannabis

Research describing patients using medicinal cannabis and its effectiveness is lacking. We aimed to describe adults with non-cancer diagnoses who are prescribed medicinal cannabis via a retrospective medical record review and assess its effectiveness and safety. From 157 Australian records, most were female (63.7%; mean age 63.0 years). Most patients had neurological (58.0%) or musculoskeletal (24.8%) conditions. Medicinal cannabis was perceived beneficial by 53.5% of patients.

Characterization of the Antitumor Potential of Extracts of Cannabis sativa Strains with High CBD Content in Human Neuroblastoma

Cannabis has been used for decades as a palliative therapy in the treatment of cancer. This is because of its beneficial effects on the pain and nausea that patients can experience as a result of chemo/radiotherapy. Tetrahydrocannabinol and cannabidiol are the main compounds present in Cannabis sativa, and both exert their actions through a receptor-mediated mechanism and through a non-receptor-mediated mechanism, which modulates the formation of reactive oxygen species. These oxidative stress conditions might trigger lipidic changes, which would compromise cell membrane stability and viability. In this sense, numerous pieces of evidence describe a potential antitumor effect of cannabinoid compounds in different types of cancer, although controversial results limit their implementation. In order to further investigate the possible mechanism involved in the antitumoral effects of cannabinoids, three extracts isolated from Cannabis sativa strains with high cannabidiol content were analyzed. Cell mortality, cytochrome c oxidase activity and the lipid composition of SH-SY5Y cells were determined in the absence and presence of specific cannabinoid ligands, with and without antioxidant pre-treatment.

The impact of recreational cannabis markets on motor vehicle accident, suicide, and opioid overdose fatalities

In the U.S., an increasing number of states are legalizing regulated commercial markets for recreational cannabis, which allows private industry to produce, distribute, and sell marijuana to those 21 and older. The health impacts of these markets are not fully understood. Preliminary evidence suggests recreational markets may be associated with increased use among adults, which indicates there may be downstream health impacts on outcomes related to cannabis use. Three causes of death that are linked to cannabis use are motor vehicle accidents, suicide, and opioid overdose. Drawing on data from U.S. death certificates from 2009 to 2019, we conducted a difference-in-differences analysis to estimate the impact of recreational markets on fatalities from motor vehicle accidents, suicide, and opioid overdose in seven states: Colorado, Washington, Oregon, Alaska, Nevada, California, and Massachusetts.

Beyond Pain Relief: A Review on Cannabidiol Potential in Medical Therapies

The phytocannabinoid cannabidiol (CBD) is receiving increasing attention due to its pharmacological properties. Although CBD is extracted from Cannabis sativa, it lacks the psychoactive effects of Δ9-tetrahydrocannabinol (THC) and has become an attractive compound for pharmacological uses due to its anti-inflammatory, antioxidant, anticonvulsant, and anxiolytic potential. The molecular mechanisms involved in CBD’s biological effects are not limited to its interaction with classical cannabinoid receptors, exerting anti-inflammatory or pain-relief effects. Several pieces of evidence demonstrate that CBD interacts with other receptors and cellular signaling cascades, which further support CBD’s therapeutic potential beyond pain management. In this review, we take a closer look at the molecular mechanisms of CBD and its potential therapeutic application in the context of cancer, neurodegeneration, and autoimmune diseases.

The Endocannabinoid System and Physical Exercise

The endocannabinoid system (ECS) is involved in various processes, including brain plas- ticity, learning and memory, neuronal development, nociception, inflammation, appetite regulation, digestion, metabolism, energy balance, motility, and regulation of stress and emotions. Physical exercise (PE) is considered a valuable non-pharmacological therapy that is an immediately available and cost-effective method with a lot of health benefits, one of them being the activation of the endoge- nous cannabinoids. Endocannabinoids (eCBs) are generated as a response to high-intensity activities and can act as short-term circuit breakers, generating antinociceptive responses for a short and variable period of time. A runner’s high is an ephemeral feeling some sport practitioners experience during endurance activities, such as running. The release of eCBs during sustained physical exercise appears to be involved in triggering this phenomenon. The last decades have been characterized by an increased interest in this emotional state induced by exercise, as it is believed to alleviate pain, induce mild sedation, increase euphoric levels, and have anxiolytic effects. This review provides information about the current state of knowledge about endocannabinoids and physical effort and also an overview of the studies published in the specialized literature about this subject.

Reprogramming systemic and local immune function to empower immunotherapy against glioblastoma

The limited benefits of immunotherapy against glioblastoma (GBM) is closely related to the paucity of T cells in brain tumor bed. Both systemic and local immunosuppression contribute to the deficiency of tumor-infiltrating T cells. However, the current studies focus heavily on the local immunosuppressive tumor microenvironment but not on the co-existence of systemic immuno- suppression. Here, we develop a nanostructure named Nano-reshaper to co- encapsulate lymphopenia alleviating agent cannabidiol and lymphocyte recruiting cytokine LIGHT. The results show that Nano-reshaper increases the number of systemic T cells and improves local T-cell recruitment condition, thus greatly increasing T-cell infiltration. When combined with immune checkpoint inhibitor, this therapeutic modality achieves 83.3% long-term survivors without recurrence in GBM models in male mice. Collectively, this work unveils that simultaneous reprogramming of systemic and local immune function is critical for T-cell based immunotherapy and provides a clinically translatable option for combating brain tumors.

Antioxidant promotion and oxidative stress downregulation by β-caryophyllene oxide attenuate lung cancer A549 cell proliferation

One of the most common cancers that result in death is lung cancer. There is new hope in the ght against lung cancer thanks to the chemopreventive properties of natural dietary substances like β- caryophyllene oxide (CPO), and research is currently being done to test this theory. CPO, a sesquiterpene isolated from medicinal plant essential oils, inhibits carcinogenesis and has been effective in treating many cancers. This study examined how CPO affected proliferation of human lung cancer A549 cells. CPO was found to have an inhibitory concentration (IC50) of 124.1 g/ml.

Effects of Cannabidiol on Innate Immunity Experimental Evidence and Clinical Evidence

Cannabidiol (CBD) is the main non-psychotropic cannabinoid derived from cannabis (Cannabis sativa L., fam. Cannabaceae). CBD has received approval by the Food and Drug Administration (FDA) and European Medicines Agency (EMA) for the treatment of seizures associated with Lennox–Gastaut syndrome or Dravet syndrome. However, CBD also has prominent anti-inflammatory and immunomodulatory effects; evidence exists that it could be beneficial in chronic inflammation, and even in acute inflammatory conditions, such as those due to SARS-CoV-2 infection. In this work, we review available evidence concerning CBD’s effects on the modulation of innate immunity. Despite the lack so far of clinical studies, extensive preclinical evidence in different models, including mice, rats, guinea pigs, and even ex vivo experiments on cells from human healthy subjects, shows that CBD exerts a wide range of inhibitory effects by decreasing cytokine production and tissue infiltration, and acting on a variety of other inflammation-related functions in several innate immune cells. Clinical studies are now warranted to establish the therapeutic role of CBD in diseases with a strong inflammatory component, such as multiple sclerosis and other autoimmune diseases, cancer, asthma, and cardiovascular diseases

Cannabis Use and COVID-19 Hospitalization Outcomes. A Retrospective Study

In vitro studies have shown cannabinoids blocking SARS-CoV-2 cellular entry and affecting replication. There is a paucity of data assessing the effect of cannabis on patients hospitalized with COVID in the USA. The aim of our study was to assess mortality and complication rates in patients hospitalized with COVID stratified by cannabis use.