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We have recently shown that lipid mediators of the emerging endocannabinoid system (ECS) are key players of
growth control of the human pilosebaceous unit. In this study, we asked whether the prototypic
endocannabinoid anandamide (N-arachidonoylethanolamine, AEA) has a role in growth and survival of
epidermal keratinocytes (KCs). Using human cultured KCs and skin organ-culture models, and by employing
combined pharmacological and molecular approaches, we provide early evidence that AEA markedly
suppresses KC proliferation and induces cell death, both in vitro and in situ. Moreover, we present that
these cellular actions are mediated by a most probably constitutively active signaling mechanism that involves
the activation of the metabotropic cannabinoid receptor CB1 and a sequential engagement of the ‘‘ionotropic
cannabinoid receptor’’ transient receptor potential vanilloid-1 (TRPV1). Finally, we demonstrate that the cellular
effects of AEA are most probably due to a Ca2þ influx via the non-selective, highly Ca2þ -permeable ion channel
TRPV1, and the concomitant elevation of intracellular Ca2þ concentration. The data reported here may
encourage one to explore whether the targeted manipulation of the above signaling pathway of the cutaneous
ECS could become a useful adjunct treatment strategy for hyperproliferative human dermatoses such as
psoriasis or KC-derived skin tumors.
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INTRODUCTION
The emerging endocannabinoid system (ECS, Mechoulam
et al., 1998; Howlett et al., 2002; Pacher et al., 2006;
Di Marzo, 2008) has lately been identified in the skin.
Indeed, several human skin cell compartments produce
prototypic endocannabinoids such as anandamide (N-arachi-
donoylethanolamine, AEA) and 2-arachidonoylglycerol, and

express enzymes involved in the synthesis and metabolism of
these lipid mediators (Calignano et al., 1998; Berdyshev
et al., 2000; Maccarrone et al., 2003; Karsak et al., 2007).
Furthermore, the G-protein-coupled metabotropic cannabi-
noid receptors (CB1 and CB2; Pertwee, 2005; Howlett, 2005;
Mackie, 2006) as well as, to our knowledge, previously
unreported, ‘‘ionotropic cannabinoid receptors’’ (such as
transient receptor potential vanilloid-1, TRPV1; Di Marzo
et al., 1998, 2001; Zygmunt et al., 1999) were identified,
both in situ and in vitro, on numerous skin cell populations
such as epidermal and hair follicle keratinocytes (KCs) and
sebaceous gland-derived sebocytes (Casanova et al., 2003;
Bodó et al., 2005; Ibrahim et al., 2005; Stander et al., 2005;
Blazquez et al., 2006; Karsak et al., 2007; Telek et al., 2007;
Dobrosi et al., 2008; Tóth et al., 2009). These discoveries
have made the ECS a topic of major interest in cutaneous
neuroendocrinology and neuropharmacology (Bı́ró et al.,
2009; Kupczyk et al., 2009).

The ECS is profoundly involved in the regulation of
human epidermal homeostasis. Indeed, AEA inhibited the
differentiation of cultured normal human epidermal KCs
(NHEKs) and HaCaT KCs whose effect was mediated by
increasing DNA methylation through mitogen-activated
protein kinase-dependent pathways (p38, p42/44) triggered
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by CB1 activation (Maccarrone et al., 2003; Paradisi et al.,
2008). Involvement of CB1 in the regulation of epidermal
differentiation is also suggested by the differential in situ
expression of CB1 in the human epidermis, with it being
higher in the more differentiated (granular and spinous) layers
(Casanova et al., 2003; Stander et al., 2005).

Published data on CB-coupled mechanisms in the regula-
tion of epidermal KC proliferation appear to be conflicting.
For example, phytocannabinoids (for example, D9-tetra-
hydrocannabinol) derived from the plant Cannabis sativa as
well as synthetic CB agonists inhibited growth of cultured
transformed (HPV-16 E6/E7) human epidermal KCs; yet, these
effects were CB1/2 independent (Wilkinson and Williamson,
2007). In contrast, on tumorigenic transformed murine
KCs (PDV.C57 and HaCa4), the growth-inhibitory actions
of synthetic CB agonists were prevented by both CB1 and CB2

antagonists (Casanova et al., 2003). Interestingly, synthetic
CB1 and CB2 agonists were reportedly ineffective in
modulating cellular growth of both cultured NHEKs and
non-tumorigenic human (HaCaT) and murine (MCA3D) KCs
(Casanova et al., 2003).

However, none of the above studies have investigated the
role of endocannabinoids in the regulation of human
epidermal KC proliferation. Therefore, in this study, we have
investigated the actions of the most extensively studied
endocannabinoid, AEA, on the biology of human KCs. Our
specific aims were to (i) define the in vitro and in situ
effects of AEA on epidermal KC growth and survival; and
(ii) identify those intracellular signaling pathways that may
mediate the actions of the endocannabinoid. To achieve
these goals, we used human cultured KCs (NHEKs, HaCaTs)
and skin organ-culture models and employed combined
pharmacological and molecular approaches.

RESULTS
Cultured human KCs express CB1, CB2, and TRPV1

First, we sought to identify the existence of putative AEA target
molecules on human KCs that were shown to express ECS
(Maccarrone et al., 2003; Petrosino et al., 2010). Expressions
of CB1 and CB2 were unambiguously identified, both on NHEK
and HaCaT KCs, using complementary immunocytochemistry
and western blotting techniques (Figure 1a and b). Likewise,
the ‘‘ionotropic AEA-receptor’’ TRPV1 was also detected on
these cells (Figure 1a and b). This corresponded well to
expression of the CB1 and CB2 genes in both types of KCs,
as demonstrated by RT-PCR (Figure 1c) and by quantitative
‘‘real-time’’ PCR (Supplementary Figure 1 online; see also
Supplementary Data online for the Materials and Methods).

AEA inhibits human KC growth and induces cell death

We then investigated the effects of the endocannabinoid
on growth and survival of KCs. We found that AEA dose-
dependently reduced (Po0.05, n¼4 in each experiment)
cell viability and proliferation of both NHEK and HaCaT
cells (Figure 2a). To assess whether this effect was due to
the induction of cell death (apoptosis and/or necrosis), a
series of functional assays was performed. As measured by
quantitative fluorimetric determinations (as well as by

complementary immunofluorescence (data not shown)),
AEA markedly (Po0.05) and dose-dependently increased
the number of Annexin-V-positive cells (Figure 2b). More-
over, the endocannabinoid AEA markedly decreased mito-
chondrial membrane potential (Figure 2c) and induced
the activation of pro-apoptotic caspases (Figure 2d), another
hallmark of apoptosis. Of further importance, highest concen-
trations of AEA were also able to significantly (Po0.05)
increase Sytox Green accumulation (Figure 2e) and glucose-
6-phosphate dehydrogenase (G6PD) release (Figure 2f), two
complementary indicators of necrosis/cytotoxicity. These
findings suggested that AEA induced cell death of human
KCs in vitro.

AEA inhibits proliferation and induces apoptosis
of epidermal KCs in situ

Next, we employed the organ culture of normal, full-
thickness human skin fragments (Lu et al., 2007; Tiede
et al., 2009). After treatment with AEA, double Ki67/TUNEL
immunolabeling was performed to simultaneously assess the
in situ effects of AEA on human KC proliferation and
apoptosis. As shown in Figure 3, perfectly in line with the
above-mentioned cell culture results, AEA treatment mark-
edly (Po0.05) suppressed the percentage of proliferating
(Ki67þ ) cells, whereas it dramatically increased that of
apoptotic (TUNELþ ) cells in normal human epidermis organ
cultured under serum-free conditions.

Cellular actions of AEA are mediated by CB1 and TRPV1

We then investigated the involvement of ‘‘AEA-receptors’’ in
mediating the cellular actions of the endocannabinoid. As
AEA can stimulate both CBs and TRPV1, first, cultured human
KCs were treated with highly selective inhibitors of defined
CB subtypes (AM251 for CB1 and AM630 for CB2) or TRPV1
(capsazepine, iodoresiniferatoxin). Figure 4a shows that these
inhibitors did not reduce viability of the cells. However,
inhibition of CB1 and TRPV1, but notably not of CB2 alone,
markedly abrogated the growth-inhibitory and apoptosis-
inducing cellular effects of AEA (Po0.05; Figure 4b–d).
Likewise, suppression of extracellular [Ca2þ ] also prevented
the cellular actions of AEA (Figure 4b–d), further supporting
the involvement of the Ca2þ -permeable ion channel TRPV1.
(Suppression of extracellular [Ca2þ ] did not change the
viability of the cells (data not shown).)

To further assess the roles of CB1 and TRPV1, a series of
receptor knockdown experiments was carried out in accor-
dance with the techniques developed in our previous studies,
which were optimized for various cultured skin cells (Dobrosi
et al., 2008; Tóth et al., 2009). (The efficacy of the specific
RNA interference (RNAi)-mediated silencing is shown in
Supplementary Figure 2 online.) Scrambled RNAi probes or
RNAi oligonucleotides against CB1, CB2, and TRPV1 did not
decrease human KC viability in culture (Figure 5a). In
contrast, RNAi-mediated silencing of CB1 and TRPV1
moderately, yet significantly (Po0.05), stimulated KC growth
(Figure 5a). This latter finding suggested that CB1 and TRPV1
may function as constitutively active and/or continuously
activated receptors (by endogenous ligands produced, for
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example, by KCs; Maccarrone et al., 2003; Petrosino et al.,
2010) to inhibit the growth of epidermal KCs.

Similar to the above pharmacological data, silencing of
CB1 or TRPV1 (but, not of CB2) counteracted AEA’s negative
effect on cell viability (Figure 5b) and the induction of
apoptosis (Figure 5c and d). These data further argued in
support of a simultaneous involvement of both CB1- and
TRPV1-mediated signaling.

A sequential signaling pathway (CB1-TRPV1-Ca2þ influx)
mediates the actions of AEA on human KCs

Intriguingly, the co-administration of CB1 and TRPV1
antagonists (Figure 4b–d) or the simultaneous RNAi-mediated

silencing of CB1 and TRPV1 (Figure 5b–d) did not exert
additive effects in preventing the cellular actions of AEA. This
suggested that AEA does not co-activate CB1 and TRPV1, but
rather induces sequential activation of either receptor (that is,
CB1-TRPV1, or TRPV1-CB1), which then mediates the
complex actions of the endocannabinoid.

As TRPV1 functions as a Ca2þ -permeable ion channel on
KCs as well (Southall et al., 2003; Bodó et al., 2005), Ca2þ -
imaging experiments were performed to test whether AEA is
capable of elevating the intracellular Ca2þ concentration
([Ca2þ ]i). As a positive control, we employed the TRPV1
agonist capsaicin (CAPS), which increases [Ca2þ ]i in KCs
(Southall et al., 2003; Bodó et al., 2005).
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Figure 1. CB1, CB2, and transient receptor potential vanilloid-1 (TRPV1) are expressed on cultured human keratinocytes (KCs). (a) Specific immuno-

reactivity of CB1, CB2, and TRPV1 on normal human epidermal (NHEK; upper row) and HaCaT KCs (lower row), as determined by immunofluorescence

(FITC, green fluorescence). Nuclei were counterstained with DAPI (4’,6-diamidino-2-phenylindole; blue fluorescence). NC, pre-absorption negative control.

Bar¼10 mm. (b) Western blot analysis. Expressions of CB1, CB2, and TRPV1 were determined on cell lysates of NHEK and HaCaT KCs. Cytochrome c (Cyt-C)

served as loading control. (c) RT-PCR analysis of CB1, CB2, and TRPV1 mRNA transcripts. NTC, non-template control. In all cases, three to five additional

experiments yielded similar results.
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AEA indeed induced transient elevations of [Ca2þ ]i in a
dose-dependent manner (Figure 6a). Of note, the amplitude
of the maximal AEA-induced [Ca2þ ]i elevation was in the
range of that evoked by 10 mM CAPS (Figure 6a). However,
the kinetics of the AEA- and the CAPS-induced cellular
actions were markedly different. Namely, the effect of AEA
was realized only after a long-term incubation of the cells
(time-to-peak, TTP, value of 168.2±20 seconds, mean±
SEM, n¼ 16 cells), in contrast to the fast action of the TRPV1
agonist CAPS (TTP of 13.8±4 seconds, mean±SEM, n¼11
cells; Figure 6b).

Of further importance, the AEA-evoked [Ca2þ ]i transients
were completely prevented by administering the TRPV1
antagonists capsazepine or iodoresiniferatoxin, or by sup-
pression of extracellular [Ca2þ ] (Figure 6c). These findings
further suggested that AEA induced a TRPV1-mediated Ca2þ

influx. Likewise, the effect of AEA to raise [Ca2þ ]i was also
fully abrogated by the CB1 antagonist AM-251 (Figure 6c).
This argued for the fact that, besides TRPV1, CB1-coupled
signaling is also involved in mediating the effect of AEA to
elevate [Ca2þ ]i. Finally, we have also found that co-
administration of CB1 and TRPV1 antagonists did not exert
an additive inhibitory effect (Figure 6c).

Intriguingly, CB1 and TRPV1 inhibitors behaved in a
different way on the TTP value of the transients. Namely, the
TRPV1 ‘‘channel antagonists’’ capsazepine and iodoresini-
feratoxin did not affect the TTP value of AEA-induced [Ca2þ ]i

responses (Figure 6b). In striking contrast, the selective CB1

antagonist AM-251 further markedly increased (the already
long) TTP value by almost threefold (Figure 6b). (Instead, the
CB2 antagonist AM-630 had no effect on either the amplitude
or the TTP of the AEA-evoked [Ca2þ ]i elevations; Figure 6b
and c.) Finally, as expected, we also found that the effect of
CAPS to raise [Ca2þ ]i was markedly abrogated by the TRPV1
inhibitors as well as by suppression of extracellular [Ca2þ ],
whereas it was not affected by antagonists of CB1 or CB2

(Figure 6d).

DISCUSSION
Uncovering the as yet ill-characterized functions of the ECS
in human skin biology and pathology is an important, integral
part of the ongoing exploration of the skin as a non-classical
neuroendocrine organ (Slominski and Wortsman, 2000;
Slominski et al., 2008). In this context, we provide evidence
that the prototypic endocannabinoid AEA—which, as
detailed above, is synthesized in several human skin cell
compartments—inhibits proliferation and induces cell death
of human epidermal KCs in cultures as well as in situ. We
also show that AEA-induced KC death is Ca2þ dependent.
These data support the concept that KCs exploit a physio-
logically relevant ECS for negatively regulating their own
growth in a paracrine and/or autocrine manner.

Furthermore, we show that the KC death-promoting effects
of AEA are mediated by a sequentially engaged signaling
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Figure 2. N-arachidonoylethanolamine (AEA) suppresses cellular viability and proliferation, and induces cell death of cultured human keratinocytes (KCs).

KCs were treated with various concentrations of AEA for 24 hours. (a) Determination of viable cell number by colorimetric MTT (3-(4,5-dimethylthiazol-2-yl)-

2,5-diphenyltetrazolium bromide) assay. Quantitative measurement of apoptosis by (b) Annexin-V assay reflecting phosphatidylserine translocation;

(c) DilC1(5) assay reflecting mitochondrial membrane potential; (d) polycaspase assay reflecting activation of pro-apoptotic caspases. Quantitative measurement

of necrosis by (e) glucose-6-phosphate dehydrogenase (G6PD) release assay and (f) Sytox Green assay. In all cases, data (mean±SEM) are expressed as a

percentage of the mean value (defined as 100%) of the vehicle-treated control group. For statistical analysis, * marks significant (Po0.05) differences compared

with the vehicle-treated control group; n¼4 in each group. Three to four additional experiments yielded similar results. NHEK, normal human epidermal KC.
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mechanism (CB1-TRPV1-Ca2þ influx). This model is
supported by several lines of evidence:

(i) Both CB1 and TRPV1 antagonists, the suppression of
extracellular [Ca2þ ], and RNAi-mediated silencing
of these receptors were able to prevent the cellular
actions of AEA.

(ii) However, these pharmacological and molecular inhi-
bitory effects were not additive, arguing for the lack of
co-activation of CB1 and TRPV1 by AEA.

(iii) The effect of AEA to increase [Ca2þ ]i was realized only
after a long-term incubation of the cells, in contrast to
the immediate action of the ‘‘direct’’ TRPV1 agonist
CAPS. Although we cannot exclude the possibility that
anandamide exhibited a slower onset of action due
to its higher lipophilicity, as compared with that of
CAPS (as nicely shown by Lazar et al., 2006 and Ursu
et al., 2010), these results suggest that AEA may not
directly activate TRPV1, but rather multiple (and yet
to be determined) AEA-evoked signaling pathways are
involved in the opening of the ion channel.

(iv) That these ‘‘upstream’’ mechanisms involve the pre-
ceding action of AEA on CB1 is supported by the
fact that, whereas both CB1 and TRPV1 antagonists
were able to equally suppress the amplitude of the

AEA-induced [Ca2þ ]i elevations, the CB1 antagonist
AM-251 (unlike the ‘‘channel antagonists’’ of TRPV1
that do not affect the activity of CB1) markedly
increased the already very long TTP value of the
[Ca2þ ]i transients.

(v) Finally, we found that the effect of CAPS to raise
[Ca2þ ]i was inhibited by TRPV1 antagonists and
by suppression of extracellular [Ca2þ ], but not by
antagonists of CB1, which argues for the lack of
an ‘‘other way around’’ sequential mechanism of
AEA-TRPV1-CB1-Ca2þ influx.

This sequential activation mechanism, at least in part, is
similar to those described in other cellular systems. Using
cells ectopically co-expressing CB1 and TRPV1, Hermann
et al. (2003) have elegantly shown that CB1 agonists,
depending on the activity of the cAMP-coupled signaling
mechanisms, may significantly modulate the Ca2þ influx
mediated by TRPV1. Likewise, in experiments employing CB1

gene-deficient mice, it was shown that constitutive activity at
the CB1 receptor was required to maintain the TRPV1
receptor in a ‘‘sensitized’’ state (Fioravanti et al., 2008).

As inhibition or RNAi-mediated silencing of CB2 did not
affect the cellular actions of AEA (which, otherwise, may also
activate CB2; Pertwee, 2005; Mackie, 2006), it appears that
CB2 is not involved in mediating the growth-inhibitory effect
of AEA on human epidermal KCs. These results were in line
with previous findings showing that CB1, but not CB2, has a
pivotal role in regulation of epidermal differentiation of
human KCs (Paradisi et al., 2008). However, CB2-mediated
signaling on KCs was shown to be involved in anti-
nociception (by the release of endogenous opioids which,
in turn, inhibit pain-sensing skin afferent fibers; Ibrahim et al.,
2005) and in various forms of cutaneous inflammation (Oka
et al. 2006; Karsak et al., 2007).

The fact that RNAi-mediated silencing of CB1 and TRPV1
significantly promoted the growth of human KCs suggests that
the joint CB1-TRPV1 signaling pathway identified here
functions as a previously unknown, endogenously active
receptor-channel mechanism that constitutively keeps human
KC proliferation in check. Therefore, the fine-tuned endo-
genous ECS tone of the skin—set by constant or on-demand
production of locally synthesized endocannabinoids—not
only controls, for example, cutaneous immune competence
and/or tolerance, lipid homeostasis, or adnexal biology
(reviewed in Bı́ró et al., 2009; Kupczyk et al., 2009) but also
regulates epidermal homeostasis. Obviously, subsequent
studies will need to support the physiological relevance of
this, to our knowledge, previously unreported concept by
direct in vivo evidence. Likewise, it deserves systematic
analysis of whether dysfunctions in the cutaneous ECS
can trigger or aggravate chronic hyperproliferative, pruritic,
and/or pro-inflammatory skin diseases. Along these lines,
the data reported here certainly encourage one to explore
whether the targeted manipulation of the ECS could
become a useful adjunct treatment strategy for hyperproli-
ferative human dermatoses such as psoriasis or KC-derived
skin tumors.
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Figure 3. N-arachidonoylethanolamine (AEA) suppresses proliferation and

induces apoptosis of human keratinocytes (KCs) in situ. Human skin organ

cultures were treated for 1, 7, and 14 days by vehicle (Control) or 30 mM AEA.

Cryostat sections were prepared and co-immunolabeling of proliferating

(Ki67þ ) and apoptotic (TUNELþ ) cells was performed. (a) Representative

immunofluorescence images of the epidermis after 14 days treatment. Ki67þ
cells: red fluorescence, TUNELþ cells: green fluorescence. Nuclei were

counterstained with DAPI (4’,6-diamidino-2-phenylindole; blue

fluorescence). Dotted lines represent the border of epidermis and dermis.

Bars¼ 25 mm. (b,c) Statistical analysis of number of Ki-67þ (b) and TUNELþ
(c) cells, as compared with the number of DAPIþ epidermal cells on 10

sections per group. Data are expressed as mean±SEM. * Marks significant

(Po0.05) differences compared with the vehicle-treated control group. Three

additional experiments yielded similar results.
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MATERIALS AND METHODS
Materials

AEA, AM-251, CAPS, capsazepine, and iodoresiniferatoxin were

purchased from Sigma-Aldrich (St Louis, MO); AM630 was obtained

from Tocris (Ellisville, MO).

Cell culturing

Human skin samples were obtained after obtaining written informed

consent from healthy individuals undergoing dermatosurgery,

adhering to Helsinki guidelines, and after obtaining Institutional

Research Ethics Committee’s permission. NHEKs were isolated

after overnight dermo–epidermal separation in 2.4 U ml�1 dispase

(Roche Diagnostics, Berlin, Germany) by short trypsin (0.05%,

Sigma-Aldrich) digestion. Cells were cultured in EpiLife serum-free

medium (Invitrogen, Paisley, UK), supplemented with 1 mM insulin,

1mM cortisol (both from Sigma-Aldrich), 100mg ml�1 streptomycin,

100 U ml�1 penicillin, 50 ng ml�1 amphotericin B (all from Biogal,

Debrecen, Hungary), 0.4% bovine pituitary extract (Invitrogen), and

0.06 mM CaCl2 (Sigma-Aldrich).

Human immortalized HaCaT KCs were cultured in DMEM

(Sigma-Aldrich) supplemented with 10% fetal calf serum, 2 mM

L-glutamine, and antibiotics (all from Invitrogen; Bodó et al., 2005;

Gönczi et al., 2008; Kiss et al., 2008; Szegedi et al., 2009).

Experiments on full-thickness human skin organ cultures

Human skin fragments of standardized size and volume were

generated and cultured in serum-free Williams’ E medium

(Biochrom, Cambridge, UK) supplemented with 2 mM L-glutamine,

10 ng ml�1 hydrocortisone (Sigma-Aldrich), 10 mg ml�1 insulin,

and penicillin/streptomycin solution (PAA Laboratories, Pasching,

Austria; Lu et al., 2007; Tiede et al., 2009).

To simultaneously assess proliferation and apoptosis in

human skin organ cultures, a Ki67/TUNEL double-staining method

was employed (Foitzik et al., 2000; Lindner et al., 2000; Bodó et al.,

2005). Briefly, after AEA treatment, cryostat sections were first

labeled with a digoxigenin–dUTP (ApopTag Fluorescein In Situ

Apoptosis Detection Kit, Millipore, Billerica, MA) in the presence of

terminal deoxynucleotidyl transferase and then with a mouse
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Figure 4. Cellular effects of N-arachidonoylethanolamine (AEA) are inhibited by antagonists of CB1 and transient receptor potential vanilloid-1 (TRPV1), and

by the suppression of extracellular [Ca2þ ]. HaCaT keratinocytes (KCs) were treated for 24 hours by vehicle (control), 10 mM AEA, various antagonists: CB1,

1mM AM251; CB2, 1mM AM630; TRPV1, 5mM capsazepine (CPZ); and 50 nM iodoresiniferatoxin (I-RTX). In addition, the effect of suppressing the [Ca2þ ]

of the culturing medium from 2 to 0.02 mM (low-Ca) was also assessed. (a,b) Determination of viable cell number by MTT (3-(4,5-dimethylthiazol-2-yl)-2,

5-diphenyltetrazolium bromide) assay. Quantitative measurement of apoptosis by (c) DilC1(5) assay and (d) Annexin-V assay. In all cases, data (mean±SEM) are

expressed as a percentage of the mean value (defined as 100%) of the vehicle-treated control group. For statistical analysis, * marks significant (Po0.05)

differences compared with the vehicle-treated control group, whereas # marks significant (Po0.05) differences compared with the AEA-treated group;

n¼ 4 in each group. Three to four additional experiments yielded similar results.
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anti-Ki67 antiserum (1:20, DAKO, Hamburg, Germany). TUNELþ
cells were visualized by an anti-digoxigenin FITC-conjugated

antibody (ApopTag kit), whereas Ki67þ cells were labeled with a

rhodamine-conjugated goat anti-mouse secondary antibody (1:200,

Jackson ImmunoResearch, West Grove, PA). Sections were then

counterstained with DAPI (4’,6-diamidino-2-phenylindole; Vector

Laboratories, Burlingame, CA). Negative controls were performed by

omitting terminal deoxynucleotidyl transferase and the Ki67

antibodies. The analysis for cell counting on 10 sections per group

was performed using a fluorescence microscope BZ-8100 (Biozero,

Keyence, Osaka, Japan). The distance between two analyzed

sections was more than 50 mm.

Immunocytochemistry

NHEK and HaCaT KCs were incubated with rabbit primary

antibodies against CB1, CB2 (1:200 dilution, Cayman, Ann Arbor,

MI), and TRPV1 (1:100, Sigma-Aldrich). For fluorescence staining,

slides were then incubated with FITC-conjugated secondary anti-

bodies (dilution 1:200, Vector Laboratories) and the nuclei were

visualized using DAPI. As negative controls, the appropriate

antibody was either omitted from the procedure or was pre-

incubated with synthetic blocking peptides used in two times excess

concentrations for 1 hour. (Figure 1a, insets; Bodó et al., 2005;

Dobrosi et al., 2008; Tóth et al., 2009).

Western blotting

KCs were harvested and lysed in ice-cold lysis buffer (20 mM Tris-HCl

(pH 7.5), 5 mM EGTA, protease inhibitor cocktail 1:100, all from

Sigma-Aldrich). After determining the protein content, 100mg protein

from each sample was subjected to SDS-PAGE, transferred to BioBond

nitrocellulose membranes (Whatman, Maidstone, UK), and then probed

with the above-mentioned antibodies against CB1, CB2 (both in the ratio

1:200) and TRPV1 (1:100). A horseradish peroxidase-conjugated goat

anti-rabbit IgG antibody (1:1,000, Bio-Rad, Hercules, CA) was used as a

secondary antibody, and the immunoreactive bands were visualized

by a SuperSignal West Pico Chemiluminescent Substrate-Enhanced

Chemiluminescence kit (Pierce, Rockford, IL) using LAS-3000 Intelligent

Dark Box (Fuji, Tokyo, Japan). To assess equal loading, membranes

were re-probed with an anti-cytochrome c antibody (1:50, Santa Cruz

Biotechnology, Santa Cruz, CA) and visualized as described above.
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Figure 5. Cellular effects of N-arachidonoylethanolamine (AEA) are inhibited by RNA interference (RNAi)-mediated silencing of CB1 and transient receptor

potential vanilloid-1 (TRPV1), but not of CB2. RNAi probes against CB1, CB2, and TRPV1, as well as scrambled RNAi probes (SCR), were introduced to

HaCaT keratinocytes. Two days after transfection, cells were treated by 10 mM AEA for 24 hours. (a, b) Determination of viable cell number by colorimetric

MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay. Quantitative measurement of apoptosis by (c) DilC1(5) assay and (d) Annexin-V

assay. In all cases, data (mean±SEM) are expressed as a percentage of the mean value (defined as 100%) of the vehicle-treated control group. For statistical

analysis, * marks significant (Po0.05) differences compared with the SCR group, whereas # marks significant (Po0.05) differences compared with the

AEAþ SCR group; n¼ 4 in each group. Three additional experiments yielded similar results.
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RT-PCR

Total RNA was isolated using TRIzol (Invitrogen), and the isolated

total RNA was reverse-transcribed into cDNA and then amplified

on a GeneAmp PCR System 2400 DNA Thermal Cycler (Applied

Biosystems, Foster City, CA). Primers were synthesized by Invitrogen

(CB1, forward: 50-CAAGCCCGCATGGACATTAGGTTA-30, reverse:

50-TCCGAGTCCCCCATGCTGTTATC-30, 291 bp, accession number:

NM_016083.4, non-intronspanning; CB2, forward: 50-TCCCACTGA

TCCCCAATGACTACC-30, reverse: 50-AGGATCTCGGGGCTTCT

TCTTTTG-30, 459 bp, accession number: NM_001841.2, non-

intronspanning; TRPV1 forward: 50-CTCCTACAACAGCCTGTAC-30,

reverse: 50-AAGGCCCAGTGTTGACAGTG-30, 680 bp, accession

number: NM_080704.3, intronspanning; glyceraldehyde-3-phosphate

dehydrogenase, forward: 50-ATGGTGAAGGTCGGTGTGAAC-30,

reverse: 50-GCTGACAATCTTGAGGGAGT-30, 340 bp, accession

number: NM_002046.3, non-intronspanning). PCR products were

visualized on 1.5% agarose gel with ethidium bromide (0.5 mg ml�1,

Sigma-Aldrich) under UV light.

Determination of viable cell numbers and proliferation

Cells were plated in 96-well multi-titer plates (20,000 cells per well

density, which corresponded to approximately 70–80% confluence)

in quadruplicates, and the number of viable cells (hence, the rate of

proliferation) was determined by measuring the conversion of the

tetrazolium salt MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-

tetrazolium bromide; Sigma-Aldrich) to formazan by mitochondrial

dehydrogenases (Tóth et al., 2009). In all cases, experiments were

repeated at least three times.

Determination of apoptosis

A decrease in the mitochondrial membrane potential is one of the

earliest markers of apoptosis (Green and Reed, 1998; Susin et al.,

1998). Mitochondrial membrane potential of cells was determined

using a MitoProbe DiIC1(5) Assay Kit (Invitrogen). Cells (20,000 cells

per well) were cultured in 96-well plates and treated in quadru-

plicates. After treatment, cells were incubated for 30 minutes with

DilC1(5) dye. Fluorescence was measured at 630 nm excitation and
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Figure 6. N-arachidonoylethanolamine (AEA) induces elevations of intracellular Ca2þ concentration ([Ca2þ ]i) by antagonists of CB1 and transient receptor

potential vanilloid-1 (TRPV1), and by the suppression of extracellular [Ca2þ ]. Ca2þ imaging on fura-2-loaded HaCaT keratinocytes. Fluorescence ratio

(F340/F380) values of excitations at 340 and 380 nm wavelengths were recorded. (a) Effects of increasing doses on AEA and 10 mM capsaicin (CAPS). (b, c) Effects

of various antagonists (CB1: 1 mM AM251; CB2: 1 mM AM630; TRPV1: 5 mM CPZ; and 50 nM I-RTX) as well as of suppressing the [Ca2þ ] of the medium

from 2 to 0.02 mM (low-Ca) on the time-to-peak (TTP) values (b) and amplitudes (c) of Ca2þ transients evoked by 10 mM AEA. (d) Effects of antagonists

and of suppressing extracellular [Ca2þ ] on the amplitudes of Ca2þ transients evoked by 10 mM CAPS. In all cases, mean±SEM of multiple determinations

(n410 cells) are presented. For statistical analysis, * marks significant (Po0.05) differences compared with the vehicle-treated group, whereas # marks

significant (Po0.05) differences compared with the AEA-treated (b,c) or CAPS-treated (d) groups.
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670 nm emission wavelengths using a fluorescence image plate

reader (FLIPR; Molecular Devices, San Francisco, CA).

In addition, apoptosis was also assessed by measuring phos-

phatidylserine translocation with FITC-conjugated Annexin-V

(1:100, Sigma-Aldrich). Fluorescence was measured at 490 nm

excitation and 520 nm emission wavelengths using FLIPR. As

a complementary approach, immunocytochemistry was also

performed using the same labeling method (data not shown).

Finally, apoptosis was also determined by fluorimetric measure-

ment of activation of pro-apoptotic caspases using a fluorescent

inhibitor of caspases (FLICA methodology, Poly Caspases Detection

Kit, Invitrogen). The fluorescent FLICA reagent specifically and

covalently interacts with the active centers of activated caspases via

a caspase-specific recognition sequence. KCs were incubated with

FLICA reagent and fluorescence was measured at 490 nm excitation

and 530 nm emission wavelengths using FLIPR (Dobrosi et al., 2008;

Tóth et al., 2009). In all apoptosis assays, experiments were repeated

at least three times.

Determination of cytotoxicity (necrosis)

Cells (20,000 cells per well) were cultured in 96-well plates and

treated in quadruplicates with endocannabinoids and antagonists

for 24 hours. Necrotic cell death was determined by measuring

G6PD release by an enzymatic process that leads to the reduction

of resazurin into red-fluorescent resorufin (G6PD Release Assay

Kit, Invitrogen). Fluorescence emission of resorufin was monitored

by the FLIPR device at 545 excitation and 590 emission wave-

lengths.

As the activity of the G6PD released from necrotic cells decreases

over 24 hours, the cytotoxic effects of long-term treatment protocols

were determined by Sytox Green staining (Invitrogen). The dye is

able to penetrate (and then bind to the nucleic acids) only into

necrotic cells with ruptured plasma membranes. Fluorescence of

intranuclear SYTOX Green was measured at 490 nm excitation and

520 nm emission wavelengths using a FLIPR (Dobrosi et al., 2008;

Tóth et al., 2009). In both cytotoxicity assays, experiments were

repeated at least three times.

RNA interference

RNAi was performed according to our optimized protocols (Dobrosi

et al., 2008; Tóth et al., 2009). In brief, KCs at 50–70% confluence

were transfected with specific stealth RNAi oligonucleotides (40 nM)

against CB1 (ID no. HSS102082), CB2 (ID no. HSS102087), and

TRPV1 (ID no. HSS111305) using Lipofectamine 2000 (all from

Invitrogen). For controls, RNAi-negative control duplexes (scrambled

RNAi) were employed. The efficacy of RNAi-driven ‘‘knockdown’’

was daily evaluated by quantitative PCR and western blotting for

4 days. At days 2 and 3, all specific RNAi oligonucleotides resulted

in 470% silencing of the given molecule (see Supplementary

Figure 2 online and Supplementary Data online).

Calcium measurement

Changes in [Ca2þ ]i on TRPV1 activation were detected as described

before (Bodó et al., 2005; Tóth et al., 2009). KCs, cultured on glass

coverslips, were loaded with a calcium-sensitive probe fura-2 AM

(5mM, Invitrogen) and were then placed on the stage of an inverted

fluorescence microscope (Diaphot, Nikon, Tokyo, Japan). Excitation

was alternated between 340 and 380 nm using a dual-wavelength

monochromator (Deltascan, Photon Technology International,

New Brunswick, NJ). The emission was monitored at 510 nm with

a photomultiplier at an acquisition rate of 10 Hz per ratio, and the

fluorescence ratio (F340/F380) values were determined. Experiments

were carried out on 410 cells in each experimental group.

Statistical analysis

Data were analyzed using one-way ANOVA with Bonferroni’s and

Dunnett’s post hoc probes, and Po0.05 values were regarded as

significant differences.
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